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Abstract

Searching for technological and organizational innovations is a fundamental
activity in social systems. Recent work in this area has focused on the notion
of firms locally searching for high points on a “fitness landscape.” Here we
show how the presence of neutral networks forming pathways of temporarily
inconsequential changes can alter the potential of innovation in such worlds.
In particular, such neutral muddling can ultimately improve the potential
of the system for innovative leaps. Neutrality provides organizational and
technological systems a degree of robustness against tinkering while simulta-
neously being a crucial enabler of change and innovation.



1 Introduction

Developing a better understanding of technological and organizational change
is a key goal of the social sciences. Recent work in this area has relied on
biological metaphors to create new models—in particular, these models have
focused on the notion of search across a “fitness landscape.”1 Here, we discuss
how new developments in the understanding of biological evolution, namely
the notion of neutral networks (Schuster et al., 1994), may fundamentally
alter our view of technological and organizational change.

The concept of a fitness landscape was introduced into biology by Wright
(1932) and has become one of the most prevalent metaphors for thinking
about biological evolution. A fitness landscape is a representation of a search
space in which peaks and valleys are associated with genotypes that give rise
to successful and unsuccessful phenotypes respectively (Provine, 1986). In
this metaphor, evolution is viewed as an adaptive walk of populations across
the fitness landscape. A key characteristic of such landscapes is its level
of ruggedness. A smooth fitness landscape is a search space with only a
few high-fitness solutions. In contrast, a rugged landscape corresponds to
a search space with an irregular topography consisting of numerous peaks
(local fitness optima).

Technological and organizational search is widely presumed to take place
on rugged landscapes. As discussed below, firms and organizations are
thought to rely on local search by sampling variants located near a cur-
rently implemented solution. Local search on a rugged landscape tends to
result in the relatively quick discovery of a local optimum. Firms are there-
fore presumed to frequently “get stuck” on sub-optimal solutions, a con-
sequence often emphasized in the economic landscapes literature. Yet, as
recently pointed out by Baumol (2002), updating Schumpeter’s (1942) argu-
ment, firms in market economies do routinely innovate and improve products
and processes. This observation is at odds with a central prediction of current
landscape models.

The neutralist perspective of evolution (Maynard-Smith, 1970; Kimura,
1968, 1983) argues that, at the molecular level, most genetic change is non-

1See, for example, Kauffman, 1995; Westhoff, Yarbrough, and Yarbrough, 1996, Dalle,
1997; Levinthal, 1997; Beinhocker, 1999; Levinthal and Warglien, 1999; McKelvey, 1999;
Kauffman, Lobo, and Macready, 2000; McCarthy and Tan, 2000; Ebeling, Karmeshu, and
Scharnhorst, 2001; Constant, 2002; Levitan, Lobo, Schuler, and Kauffman, 2002; Rivkin
and Siggelkow, 2002; Fleming and Sorenson, 2001, 2003; and Haslett and Osborne, 2003.
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adaptive, that is, neutral or quasi-neutral. Under this perspective, neutrality
is largely viewed as a manifestation of system robustness against genetic mu-
tations. Yet, neutral configurations do not occur as scattered, isolated points
in genetic space, but rather form connected networks where small steps lead
from one neutral configuration to another. In this way, a random walk can
trace out many neutral pathways reaching across genetic space. As pointed
out by Huynen et al. (1996) and Fontana and Schuster (1998), connected neu-
trality enables evolutionary change by providing the specific genetic contexts
necessary for subsequent mutations to become consequential. That is, neutral
genetic changes can accumulate in the genotype and thereby set the context
for a subsequent mutation to cause an advantageous change that would have
been unattainable from the earlier genetic configurations. From this point of
view, the same mechanism that buffers a biological organism against genetic
perturbations not only conveys robustness to a lineage, but also evolvabil-
ity, that is, the capacity to evolve (Wagner and Altenberg, 1996). Neutral
networks transform the typical picture of a rugged landscape with localized
fitness peaks into a landscape characterized by vast interconnected systems
of ridges corresponding to suboptimal solutions. Critically, this implies that
equivalent solutions are no longer localized in genetic space, and thus our
usual measures of ruggedness and correlation do not adequately characterize
the landscape.

We argue here that neutral networks are an important feature of tech-
nological and organizational landscapes. Firms often experiment with modi-
fying extant solutions of organizational or technological problems which fre-
quently do not result in noticeable change or improvement (a point made
by Arrow (1974)). The accumulation of temporarily inconsequential (hence
neutral) changes may seem useless, yet such changes produce precisely the
context needed for innovation. Given sufficient neutrality, landscapes can be
searched efficiently by constantly repositioning in configuration space subop-
timal solutions. Notwithstanding the apparent futility of this process, such
muddling ultimately improves the potential of the system for innovative leaps.

2 Innovation Through Local Search

Successful firms are capable of steady, and occasionally dramatic, improve-
ments in performance across a wide variety of dimensions. Learning and
innovation are a quest into the unknown, involving a search of technological,
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organizational, and market opportunities.2 This search process takes place
within a space of possibilities whose elements are all of the potential varia-
tions of technologies, production processes, operational routines, engineering
designs, organizational forms, inventory methods, scheduling systems, supply
chains, managerial strategies, and so on, utilized by the firm. The various
means by which a firm moves in this space of possibilities greatly influence
the direction, rate, and overall success of learning and innovation. At any
time a firm can perform an experiment in hopes of finding new improvements.

The empirical literature on technology management and firm-level tech-
nological change emphasizes that, although firms employ a wide range of
search strategies, they tend to engage in local search—that is, search that
enables firms to build upon their established technology and expertise (see,
for example, Sahal, 1981; Freeman, 1982; Lee and Allen, 1982; Hannan and
Freeman, 1984; Tushman and Anderson, 1986; Boeker, 1989; Henderson and
Clark, 1990; Shan, 1990; Barney, 1991; Helfat, 1994; and Herriott, Levinthal
and March, 1995). The prevalence of local search stems from the significant
effort required for firms to achieve a given level of technological competence,
as well as from the greater risks and uncertainty faced by firms when they
search for innovations far away from their current knowledge base (see the
discussion in Abernathy and Clark, 1985; Cohen and Levinthal, 1989; Stuart
and Podolny, 1996; Potts, 2001; Fleming, 2001; and Loasby, 2002).

There is also ample evidence that while firms are sporadic inventors, they
are routine innovators (Schmookler, 1966; Rosenberg, 1982; and Baumol,
2002). Although most large companies (particularly those in oligopolistic
high-technology markets) frequently invest in research, few make a habit
of seeking inventions, preferring instead to tinker, recombine, and perfect.3

The design skills, technical know-how, organizational knowledge, and man-
agerial styles resident in a given company result from the cumulative choices

2Much of the modern macroeconomics and management science literature on techno-
logical and organizational innovation is couched in the framework of search theory. See, for
example, Kohn and Shavell, 1974; Evenson and Kislev, 1976; Weitzman, 1979; Levinthal
and March, 1981; Hey, 1982; Jovanovic, 1982; Nelson and Winter, 1982; Tesler, 1982; Dosi,
1984; Muth, 1986; Sargent, 1987; Cohen and Levinthal, 1989; Jovanovic and Rob, 1990;
Marengo, 1992; Ericson and Pakes, 1995; Rosenberg, 1995; Bikhchandani and Sharma,
1996; Klepper, 1996; Hoppe, 2000; and Mahdi, 2003.

3Of relevance here is the observation that understanding often followed practice in the
application of science in the United States industry, with analysis and quantification only
coming after tinkering and experimentation (see Rosenberg and Birdzell, Jr., 1986, and
Mowery and Rosenberg, 1998).
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made by the firm’s engineers, scientists, and managers. These choices tend
to reinforce successful practices and steer the firm away from “disruptive”
changes. Furthermore, as a market matures, the best performing companies
tend to be those that are most aggressive in their local search strategies,
what Christensen (1997) refers to as “component level innovation.”

Note that local and undirected search is not necessarily antithetical to
innovation. In their influential examination of successful business organiza-
tions, Collins and Porras (1994, p. 141) observe: “In examining the history
of the visionary companies, we were struck by how often they made some
of their best moves not by detailed strategic planning, but rather by ex-
perimentation, trial and error, opportunism and—quite literally—accident.
What looks in hindsight like a brilliant strategy was often the residual result
of opportunistic experimentation and ‘purposeful accidents.’ ” Empirical ev-
idence, engineering practice, and historical records all strongly suggest that a
firm’s current technological, managerial, and organizational practices greatly
constrain its technological search to remain close to what the firm already
does and knows (Basalla, 1988; Anderson and Tushman, 1990; Freeman,
1994; Ashmos, Duchon, and McDaniel, 1998; and Caselli, 1999).

3 A General Search-Landscape Framework

We treat technologies as combinatorial systems, whose global behavior results
from the interactions among constituent components (similar approaches are
used by Romer, 1990, 1996; Weitzman, 1996, 1998; Brusoni and Prencipe,
2001; and Fleming, 2001). We consider the phenomenon of neutrality to be
of particular relevance for understanding the evolution of “complex” tech-
nologies. Indeed, Iansiti and Khanna (1995) call a technology complex if its
functional characteristics can be obtained through multiple configurational,
material, and engineering approaches.

A high degree of interconnectivity among constituent components appears
to be another characteristic of complex technologies (Potts, 2001; Loasby,
2001). Connectivity causes the performance of a component to affect, or be
affected by, other components. In biology, the consequences of a mutation
of gene i depend on the particular variant of gene j present in that same
genome. This phenomenon is known as epistasis.

The interactions among components influence both the ruggedness of the
landscape and the extent and structure of neutral networks. Ruggedness
arises due to “frustration,” a term used in physics (Anderson, 1972) to de-
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note multiple conflicting interactions on a given component, such that no set
of behaviors of the components can simultaneously satisfy (or optimize) all of
the constraints. Frustration challenges the ability of firms to find good solu-
tions.4 The structure and extent of neutral networks also is tied to component
interactions because such interconnections will often mask the consequences
of changes in individual components.

The biological metaphor of a “fitness” landscape provides a sensible repre-
sentation of a technology search space. We can think of each possible variant
for a given technology that a firm may want to implement—a configuration—
as a location on a landscape. Neighboring locations are “close” in the sense
that it is easy for a firm to move from one neighboring configuration to
another. Each configuration is associated with a fitness value (payoff or
performance), and the height of the corresponding point on the landscape
reflects this value. Thus, the “peaks” in the landscape represent configura-
tions yielding good solutions, while the “valleys” correspond to undesirable
ones.5

An important property of a landscape is its correlation (Stadler, 1992;
Fontana et al., 1993)—a measure of the extent to which nearby technological
variants have similar levels of performance. Landscape correlation is low
if slight changes to a solution drastically alter performance; It is high if
performance is relatively insensitive to such changes. Such correlations are
computed by averaging (squared) performance differences over a large sample
of configuration pairs at some distance d.

In traditional models of search on fitness landscapes, the correlation of
the landscape is a key factor in determining the effectiveness of search: land-
scapes with low correlations are more “rugged,” and thus are likely to trap
agents on local peaks.

The presence of neutral networks, however, challenges this traditional
view of correlation coinciding with the difficulty of search in high-dimensional
spaces. Neutral networks are paths of equivalent neighbors percolating across
the space. Any such path only requires the proper alignment of points along
a few dimensions, and thus it is not directly tied to the average differences

4A similar theme is found in the work of Sagan (1993), Kennedy (1994), Dörner (1996),
and Perrow (1999).

5Landscapes arise in many settings and have been used to model evolutionary genet-
ics, molecular biology, combinatorial optimization, chemistry, economics, and statistical
mechanics. For a comprehensive discussion of landscape models see Macken, Hagan, and
Perelson (1991); Macken and Stadler (1995); and Stadler (1995).
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that are the basis of correlation measures. It is possible, therefore, to have a
very “rugged” landscape (in terms of correlation) that can be easily traversed
via a neutral network (Huynen et al., 1996). If so, innovation on complex
search landscapes may be far easier than previously thought.

3.1 Search as a Walk on a Landscape

We now describe the general features of the technological problem facing
the firm in our modeling framework. The firm’s technology is comprised of
a number of distinct operations which at each moment can be in one of a
finite number of possible, discrete, states. Consequently, improvements in the
technology entails changes in the state of the components constituting the
technology.6 Technological improvements result from the firm finding better
configurations for its technology. Thus, the firm’s technological problem is a
combinatorial optimization problem. A technological landscape is a means
of representing the problem faced by the firm in its search for the optimal
technology.

The search by firms for new technological solutions can be conceptualized
as a simple adaptive walk on a technological landscape. In such a walk, a
firm searches for improvements by sampling for new solutions at distance d
from the currently available solution. (In the case of local search, d is small
relative to the diameter of the configuration space.) Sampling implies an
experiment in which the firm changes an existing technology and evaluates its
consequences. If the performance of the experimental configuration is equal
to or greater than the performance of the current configuration, the firm
adopts the experimental configuration and “moves” to the new location on
the technological landscape. This sampling step is then iterated starting with
the newly adopted location on the landscape. Firms continue making such
steps until they reach a solution that cannot be further improved through
local search.

Note that neutral networks cannot be exploited if the decision to adopt
the experimental configuration requires the latter to be better than the cur-
rent configuration. Furthermore, the notion of local optimum is deceptive in

6Our view of technological innovation is similar to that of Romer (1990), who remarks
that over the past few hundred years the raw materials used in production have not
changed, but that as a result of trial and error, experimentation, refinement, and scientific
investigation, the “instructions” followed for combining raw materials have become vastly
more sophisticated. Our “technologies” are analogous to Romer’s “instructions.”
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the presence of neutral networks. While the performance of a configuration
may not be amenable to improvement locally or even regionally, the situ-
ation is unlike that of a conventional localized peak. A neutral network is
a non-local structure, like a ridge-system, which permits level motion into
far-away regions of the landscape where improvement may become possible
again. Whether adaptive walks starting at different locations on the same
technological landscape end up at different local optima, depends therefore
on the extent of neutrality.

Figure 1, left-hand panel, provides a simple illustration of these ideas.
Agents must navigate this two-dimensional search space whose configurations
have three possible payoffs (low, moderate, or high). Moreover, agents are
constrained to move only within a neighborhood of their current location
in configuration space. Consider an agent starting in the upper-left corner.
Such an agent receives a moderate payoff, and local moves either leave the
agent indifferent or worse off. If the search strategy requires improvement, the
agent is destined to remain in this corner. Yet, if the strategy only requires
avoiding a worsening of the payoff, the agent has an escape path through
a narrow neutral ridge, providing moderate payoff, between the upper-left
and lower-right corners. On this path, a myopic agent would diffuse back
and forth through neutral walks. Eventually, however, the diffusive motion
would move the agent into the high payoff domain in the lower-right corner.
In this particular example, given sufficient time, such a random walk will
always succeed.7

Figure 1, right-hand panel, illustrates the impact of adjacency among
neutral networks. Three neutral networks, each capturing one of three dif-
ferent “functionalities,” are shown on the left-hand side of the panel. The
likelihood of a transition from, say, the square-functionality to the circle-
functionality is measured by the size of the shared boundary between these
two networks relative to the total boundary size of the square network. These
boundary relationships between the networks determine the “accessibilities”
of the corresponding functionalities. It is conceptually convenient (Fontana
and Schuster, 1998; Stadler et al., 2001) to define a threshold of accessibility
above which a functionality is declared to be a neighbor of another func-
tionality. Note that this relationship of accessibility may not be symmetric.8

7For a true one-dimensional random walk the asymptotic probability that the system
has not moved to the higher payoff by time t scales by l/

√
t, where l is the length of the

path.
8In which case the space of functionalities is not a metric space.
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Figure 1: Some neutrality schematics.

Intuitively, it is possible for, say, the country of Monaco to be near France,
because a random step out of Monaco is likely to end up in France; Yet, by
that same criterion France is not near Monaco.

Organizational and technological search has come to be seen as requiring
a judicious choice between exploitation and exploration. In March’s (1991)
discussion of organizational search, a distinction is made between the ex-
ploration of new possibilities and the exploitation of existing capabilities.
Above, we show how an agent can explore (via drifting along a neutral net-
work), while still maintaining the ability to exploit. Thus neutral networks
begin to blur the distinction between exploitation and exploration.

4 Sources of Technological Neutrality

The existence of neutrality in a technological landscape (indeed, on any land-
scape) hinges on distinct combinatorial configurations having, or being as-
signed, similar performance measures. It is possible that different “material”
technologies, instantiating different engineering and physical-chemical pro-
cesses, can result in the same functionality. Individual modifications to an
existing system design often do not have measurable effects on performance,
although in the aggregate such modification can indeed result in improved
performance. As a familiar example, take the case of automobile design
and how standard features have evolved from bare necessities to include
gas gauges, heaters, defrosters, and more recently, ergonomically adjustable
seats, GPS devices, rear-view cameras, and micro-processors to monitor the
performance of engine components. None of these features greatly affected
performance, but taken together, they can substantially alter the effective-
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ness of the underlying car design.
Neutrality becomes manifest by the co-existence of different technologies

that perform similarly. A well-known example of an old technology keeping
up for a long time with a novel one is the prolonged existence of sailing ships
next to steamships (Rosenberg, 1972). Similarly, consider that in the late
1950s, three different types of airliner—the propeller driven Douglas DC-7,
Lockheed’s turboprop Electra, and the jet-propelled Sud Caravelle, could all
be found in commercial service.9

Another source of neutrality rests on the fact that assigning a performance
measure to a new technology, or evaluating the results of a technological or
organizational experiment is, ultimately, an exercise in evaluation, and such
evaluations often have a limited resolution. Moreover, evaluations are of-
ten subject to error. Time restrictions, managerial constraints, opportunity
costs, the effort devoted to quality control, and scientific or technological
considerations, may all affect the evaluation of the performance of experi-
ments and introduce neutrality by observation. In the same vein, it is often
easier to judge whether a variant performs worse than its predecessor, than
it is to decide whether the experiment is an improvement.

5 Modeling Neutrality in a Technological Landscape

5.1 The NK-Model

For the purpose of discussing the implications of neutrality on economic
search, we use a simple model of technological search as movement on a
NK-landscape (Kauffman, 1993). The model presented here is a variant
of the one developed in Auerswald, Kauffman, Lobo, and Shell (2000) and
Kauffman, Lobo, and Macready (2000).

The firm’s technology encompasses all of the deliberate organizational,
managerial, and technical practices that, when performed together, result
in the production of a specific good or service. We assume, however, that
technologies are not fully known even to the firms that use them, much less
to outsiders. Technologies are assumed to consist of N distinct processes
that exist in S possible types. These types reflect either qualitative (for
example, whether to use a conveyor belt or a forklift for internal transport) or
quantitative aspects (such as the setting of a dial on a machine), or a mixture

9It was not until Boeing’s 707 in 1958 that the technological superiority of jet propulsion
for civilian airliners was clearly established.
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of both. A technological configuration (technology for short) consists in a
specific choice for each of the N processes in a production recipe. Thus, there
are SN possible technologies. A new technology is represented by a change
in at least one process within an existing technological configuration. In this
framework, technological improvement takes the form of finding technologies
with superior performance.

Typically the processes constituting a technology interact, meaning that
the consequences of a particular process choice depends on the other processes
in the configuration. Interaction among the component processes often leads
to a tradeoff between conflicting criteria. For example, the management de-
cision to buy in bulk can lead to decreasing per unit production costs, but
also higher warehousing costs. Or consider the use of gas turbines (which
are relatively easy to turn on and off) which can make a power grid more
flexible, but at the same time more expensive to run. Within a company,
giving greater autonomy to design teams can accelerate the rate at which
new ideas are generated, but this can also make product design integration
more difficult. Designing an aircraft requires positioning the fuel tanks, cre-
ating strong but flexible wings, finding engines that are powerful yet quiet,
light, and fuel efficient, separating redundant systems, and insuring sufficient
passenger capacity. The best solution with regard to one aspect of the design
problem often conflicts with the best solution to other aspects.

In the NK-model each process makes a contribution to the overall per-
formance of the technology that depends on its own type and the types of K
other processes (K ≤ N −1).10 The parameter K represents the interactions
among the processes constituting a technology and therefore determines the
level of conflicting constraints a firm has to face when making choices. When
K = 0 (no interaction), each processes performs independently of all other
processes. In contrast, when K = N − 1, the performance of each process
depends on itself and all other processes. In this way, K determines the
correlation structures of the landscape. When K equals zero, the landscape
has a single, smooth-sided, peak. As K increases, the landscape becomes
more rugged. A change in a process affects the contributions of several other
processes, causing neighboring technologies to have different performances
values. When K = N − 1, the landscape is maximally rugged. The correla-

10The SK+1 possible contributions to total performance made by the jth process are
treated as i.i.d. random variables drawn from some distribution F . In the numerical results
presented below, F is U(0, 1), although our results are insensitive to this choice.
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tion coefficient is given by (Weinberger, 1990; Fontana et al., 1993)

ρ(d) =

[

1 −
d

N

]

[

1 −
K

N − 1

]d

, (1)

and thus for d = 1 and large N , K = 0 implies ρ(1) ≈ 1 and K = N − 1 has
ρ(N) = 0.

5.2 Neutrality in an NK-World

The raw NK-model has no neutrality. We introduce neutrality by discretiz-
ing the continuous performance values produced by the original model. In the
standard NK-model, any given configuration on the landscape is assigned a
performance (fitness) value between 0.0 and 1.0. Here we collect these con-
tinuous values into M bins, with the fitness values between [0.0, 1/M) being
mapped to bin 1, [1/M, 2/M) being assigned to bin 2, and so on.11 This
simple procedure implements a notion of neutrality in which configurations
with closely related fitness values are hard to distinguish from one another.

Intuition about the behavior of the model with neutrality can be gained
through the following thought experiment (see Figure 2). Consider taking a
thin vertical slice out of a mountain range composed of evenly-distributed,
horizontal layers of rock. As we increase the value of M , we increase the
number of layers that make up the rock (by decreasing the height of each
layer). As M goes to infinity the layers become incredibly thin and we are
back in the standard NK-model.

Agents in this world wander the surface of the mountain range in search
of increasing heights. A hill-climbing searcher is willing to randomly wander
on the surface as long as it is in its current layer of rock (implying neutral-
ity). If during these travels it hits another layer of rock, it will always enter
higher layers and always avoid lower ones. If M is very low, then almost
all configurations (that is, locations on the surface) become indistinguish-
able, and the agent ends up wandering randomly across the entire surface.
The key question we wish to answer is how do increasing levels of neutrality
(decreasing M) affect search on landscapes of differing ruggedness.

First, consider a smooth, single peak landscape (left panel of Figure 2). If
the mountain has a large number of layers (high M , that is, low neutrality),

11Newman and Englehardt (1998) use a related approach to impose neutrality by dis-
cretizing the weights that enter into the fitness calculation.
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Figure 2: An illustration of the interaction between neutrality (left-hand side
of each panel) and ruggedness.

a hill-climbing searcher will quickly ascend to, and remain at, the top of
the mountain. As we increase the size of the layers (that is, decrease M or
increase neutrality), agents will have a harder time ascending the heights,
as they will often be wandering up and down in their current layer. They
will, however, eventually ascend to the uppermost layer, as their random
wandering within any given layer will at some point put them in contact with
the next higher layer. Once they achieve the highest layer, they will randomly
wander within it. Thus, we would predict that under smooth landscapes,
increasing neutrality will slow adaptation (due to excessive drift) and the
final outcome will be close to the highest value possible on the landscape
within an error dictated by the height of the final layer.

Landscape Type
Neutrality Smooth Rugged

Low Best Outcome, Poor Outcome,
Quick Adaptation Quick Adaptation

High Good Outcome, Good Outcome,
Slow Adaptation Slow Adaptation

Table 1: Predicted relationship of adaptive behavior given neutrality and
landscape ruggedness.

Next, consider a rugged, multi-peaked landscape (right panel of Figure 2).
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If the landscape is composed of a large number of layers (that is, has low
neutrality), then a hill-climbing agent will quickly ascend, and be trapped
at, a local peak. Note that even though higher peaks may exist, the local
nature of the agent’s adaptation prevents it from jumping across intervening
valleys to get onto more fruitful slopes. As we increase neutrality, it is pos-
sible for a given layer of the mountain to encompass such valleys. Thus, an
agent wandering around in such a layer will be able to bridge the previously
impenetrable valley and get onto the better slopes. Thus, we would predict
that with rugged landscapes, increasing neutrality will also slow adaptation,
yet (unlike before) allow agents to achieve better outcomes than they other-
wise would, even when we take into account the inherent noise imposed by
the agent randomly wandering in the final layer.

Table 1 summarizes the above predictions. In general, as neutrality in-
creases, we expect adaptation to slow as the agents’ probability of wandering
within a fitness layer increases. If landscapes are smooth, we would expect
neutrality to hamper the discovery and maintenance of good solutions. On
the other hand, when landscapes are rugged, neutrality should allow agents to
traverse previously impassable valleys and, in so doing, find better solutions.

We test the above predictions through a series of numerical experiments.
In these experiments, we simulate an individual agent’s search as an adaptive
walk on NK-landscapes of varying ruggedness and neutrality. Landscapes
had N = 100 and S = 3, and K was chosen to produce four different cor-
relations (ρ = 0.2, 0.3, 0.5, 0.7). We considered four different levels of the
neutrality-tuning parameter M . A thousand searches, with randomly as-
signed initial locations, were simulated for each combination of parameters,
and the reported results are the averages over the thousand runs.

Figure 3 presents the results. On smooth or somewhat rugged landscapes,
the presence of neutrality does not improve on the performance of a simple
adaptive walk. Indeed, agents adapt slower and tend to end up at inferior
levels of fitness. However, on very rugged landscapes (ρ = 0.2), neutrality
results in superior outcomes. On such landscapes, an intermediate level of
neutrality tends to have the best tradeoff between speed of adaptation and
ultimate fitness.

Thus, the introduction of neutrality fundamentally alters our view of
search in NK-models. Prior work that applied these models to organiza-
tional and technological innovation has emphasize how the tunable correla-
tion structure of these models impacts the traditional notion of ruggedness,
and hence search. Neutral networks, however, can completely change the
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Figure 3: Average fitness per iteration as a function of landscape correlation
(ρ) and level of neutrality (M) versus a simple adaptive walk (SAW).
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character of a landscape without affecting its correlation structure. These
networks allow extensive “ridge” systems to form that can be traversed by
suboptimal, local wanderings.

Neutrality depends upon both the interdependence among the component
parts of a configuration (tuned by the K parameter in the NK-model) and
the connectivity of neutral configurations into extensive percolating paths.
Decreasing the number of evaluation bins obviously increases the number
of neutral configurations. This, however, does not imply that those neutral
configurations form into connected path that percolates across the landscape.
In fact, in the present model high “ruggedness” (in correlation terms) of the
landscape may actually prevent the formation of such extended and con-
nected neutral networks. Thus, the impacts of neutrality we see above are
likely to be attenuated over alternative models (Newman and Engelhardt,
1998) that more explicitly create percolating, neutral networks.

6 Technological Neutrality in Software and Hardware

Examples of the potential of technological neutrality can be drawn from a
variety of industries. Here, we focus on a few from the information technology
sector, an area of industrial activity that has become increasingly important
over the last few decades.

As software developers attempt to create ever larger programs, it is in-
creasingly being recognized that there is a brewing “complexity crisis.” The
sheer size of current software, linked with the necessary interactions among
various code elements, make programs inherently difficult to create, maintain,
and modify.

Software development offers an interesting example of neutral technolog-
ical networks. If we take the source code as the “genotype” and the way the
program interacts with users, input, and output as the “phenotype,” then it
is easy to see how a variety of genotypes can lead to the identical phenotype.

Software “refactoring” (see, for example, Fowler et al., 1999) is a pro-
cess in which the underlying source code is rewritten to improve its design
without altering the program’s behavior. Refactoring is intended to be neu-
tral since the genotypic changes should not alter the phenotype. However,
neutral refactoring does improve the evolvability of the software. As code
is refactored, key elements of the program’s structure are better formulated,
code is simplified, and becomes easier to understand. In this way, code ac-
quires a new form that may lead to the discovery of opportunities for change
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or new functionality. Once fully refactored, the code can more readily adapt
to various “environmental” changes, like new operating systems, user needs,
etc.

Oftentimes code evolvability becomes a goal intentionally pursued by soft-
ware developers. In those circumstances, evolvability has become an explicit
trait of the code’s “phenotype.” As a consequence, changes that were neutral
prior to the declaration of that goal are no longer neutral. Once a feature has
become the target of intentional action, it comes under selection pressure.
Nonetheless, at early stages of software development or in very large code
bases, overall evolvability is desirable but not specifically designable; It is
likely to suddenly, and unintentionally, arise by the accumulation of changes
that are valued as neutral by the developer. Furthermore, even when evolv-
ability has become a declared feature of design, there are still many ex ante
equivalent ways of achieving that goal and neutrality is still a factor in shap-
ing that landscape.

The attempt of making software more evolvable (which means intelligi-
ble across programmers, extensible, and robust) has led to design elements
like encapsulation that hide implementation details behind public interfaces.
While enabling intentional extensions of functionality like plug-ins, such de-
sign elements also increase the overall neutrality of the program, and facilitate
tinkering that is not goal-oriented but of a more experimental character.

Consider, for example, the following common development scenario from
the world of Java. A formal request for changes to the Java language is first
made through a Java Specification Request (JSR), which is a description, in
very general terms, of a set of functionalities for accomplishing a certain task.
The JSR is then followed by an Application Programmer Interface (API), a
more detailed specification of the set of functionalities to accomplish the
desired task. Developers then design implementations that instantiate the
API, and there can be, and usually are, a variety of different implementa-
tions. Initially, several different implementations, with similar performance
characteristics, of the same API are created and promulgated among users.
The choice of one implementation over another is often a matter of aesthetic,
and not strict performance, criteria.

Christensen’s (1997) work provides some other examples of neutral tech-
nologies in the computer industry. Consider the average data recording
density achieved by different head and disk-drive technologies. During the
late 1980’s, particulate-oxide-disk technology and ferrite-head technology had
comparable densities, while in the mid 1990’s thin-film heads and magneto-
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resistive heads were comparable. As discussed by Christensen, these tech-
nologies went on to experience very different product development trajec-
tories. Similar performance, as measured by storage capacity, were simul-
taneously achieved by four different rigid-disk-drive technologies (14-, 8-,
5.25-, and 3.5-inch drives) during the fifteen year span between 1975 and
1990 (Christensen 1993). Each of these technologies arose via different de-
velopmental trajectories. Laser and ink-jet printer technologies (originally
developed by Hewlett Packard) are quite distinct, and each has experienced
different rates of development. Yet, it is currently possible to find pairs of
laser and ink-jet printers (manufactured by HP, Cannon and IBM) of compa-
rable performance, as measured by printing speed, print quality, and price.
In all of these examples, drift among functionally equivalent technologies
often leads to accumulated changes by which small changes in one of the
technologies secures a major innovation and shift in market leadership.

7 Conclusion

Technological and organizational innovation is a key feature in social systems.
The introduction of the biological notion of a fitness landscape provided a
useful substrate by which to model the process of complex search in such
domains. Work in this area has shown how the spatial correlation of the
fitness landscape can be tied to a notion of ruggedness, and that search agents
will tend to get trapped at inferior outcomes on more rugged landscapes.

Here, we extend this view of search by incorporating recent work in bi-
ology on the idea of neutral networks. Neutral networks form pathways of
temporarily inconsequential changes that, while a priori may be thought of
as at best non-productive and at worst a serious nuisance or distraction,
fundamentally alter the potential of search in such worlds. In particular,
muddling through the landscape on neutral networks ultimately improves
the potential of the system for innovative leaps, and offers an escape route
by which to avoid the usual pitfalls of ruggedness.

Neutral networks form an extensive, connected system of ridges along
which search agents cannot sense a difference in performance. This allows
agents to drift on the network across the search space without worsening (or
improving) their currently best solution. In so doing, however, agents can
reach new, far-away configurations that may yield productive, previously
inaccessible, innovations. Such networks are not symmetric, in the sense
that it may be easier to transit from one organizational form to another,
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than the other way around. Moreover, neutrality is always evaluated within
a given search context. Thus, the same change that keeps software neutral
in the sense that from the user’s perspective it performs the same, may have
been non-neutral from the perspective of improving the ability of future
programmers to modify and maintain the code.

As demonstrated above, we can build in notions of neutrality into stan-
dard models of fitness landscapes. Here we did so just to illustrate the un-
derlying ideas, and we suspect that further theoretical investigations of this
phenomenon would be fruitful. In particular, having models with more direct
ways to form connected neutral pathways may be useful. We also examined
some examples from software and manufactured goods where neutrality may
have arisen in industry. Obviously, many more such examples can be found,
and it is likely that more extensive case studies would be of interest.

The presence of neutrality provides two important, and somewhat para-
doxical, features to organizational and technological systems. First, it gives
such systems a degree of robustness against tinkering. Indeed, without such
robustness it is hard to imagine how such systems could be productively em-
braced. Second, as shown above, neutrality is also a crucial enabler of change
and innovation. Thus, neutrality is able to simultaneously convey both ro-
bustness and innovation—two features that are of fundamental importance
to complex systems.
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