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Abstract

A model of adaptive economic behavior is developed and analyzed. The model, by relying
on specific biclogical concepts, reduces the ambiguity which has confounded previous biclogical-
based models, and has sufficient structure to be explicitly explored. The basic assumptions of
the model are examined, and they appear to accord well with current economic and psychological
theories of behavior. Furthermore, the theoretical properties of the model are derived based on
recent work in computer science. These properties indicate that the basic model has a strong
optimization component, which suggests that the optimization and adaptive approaches are not
mutually exclusive theoretical milieus. The model is applied to a variety of economic problems,
and its implications are derived and analyzed.
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1. Introduction

Under the current optimization paradigm, a rather eloquent and elaborate theory of economic behavior
has been formulated. Various aspects of this formulation have been criticized by a number of economists (for
example, Simon, 1955, 1959; Koopmans, 1957; Cyert and March, 1963; Winter, 1964, 1971, 1975; Nelson and
Winter, 1982}, Most of these criticisms have been directed at the current paradigm’s reliance on equilibrium
conditions and its Tather extreme assumptions about the abilities of individual agents. One class of models
which has attempted to circumvent these criticisms is derived from basic biological theories. This paper
develops, formalizes, and applies a biologically-based madel of economic behavior.

The model developed in this paper relies on two major premises: that some economic behavior has cloge
analogues to the biological behavior of ecosystems and species, and that this behavior can be effectively
modeled and analyzed. The first premise, as discussed below, has long been recognized by economists.
The second premise has been more problematic, however, recent work in computer science has produced
effective modeling techniques. Unlike previous biologically-based economic models, the model developed
in this paper uses specific biological processes. By relying on specific processes the model can incorporate
important elements from both economic and psychological theories of behavior. The use of specific processes
also imposes formal structure on the model, which allows some interesting and important properties of the
model to be theoretically derived.

This paper is organized into four sections. The first section provides a general discussion on the use of
biologically-based models in economics, both historically and vis-a-vis the current optimization paradigm.
The second section introduces a general framework for adaptive models, and discusses the problems which
face all adaptive models. The third section introduces the actual model and its theoretical properties, and
provides the rationale for the use of such a model in an economic context. Finally, the last section applies
the model to a variety of interesting economic examples.

2. Biologically-Based Models In Economics

Biological models are well established in the history of economic thought. Boulding {1981) argued that
an implicit biclogical model is very strong throughout most of early economic thought beginning with Adam
Smith’s Wealth of Nations in 1776. Certainly, Malthus’s model of the dynamic interaction between popula-
tion size and wage rates presented in Principles of Population (1798) is an example of an early evolutionary
theory applied to an economic phenomenon.® The thread of biologically-based models continues up to, and
is apparent in, the work of Marshall (1890}, although it was around this time that an emphasis on equi-
librium states started to take hold (for example, Walras, 1874}. Equilibrium analysis, with rare exceptions
(Schumpeter, 1912, 1942}, became the dominant mode of economic reasoning.

While equilibrium models have dominated current thought, a number of recent authors have proposed
biologically-based models. Alchian {1950), Friedman (1953), Winter (1964), Day and Groves (1975), Bould-
ing (1978, 1981), Nelson and Winter (1982}, and Cross, (1983), have all suggested that various biological
concepts may be useful adjuncts to more traditional economic theories. For the most part, these biological
models have relied upon rather general results from evolutionary and ecological biology. Only Nelson and
Winter {1982) and Cross {1983) have presented well formalized and relatively testable models. All of the
work indicates that economic analogues of biological concepts may prove to be fertile areas for investigation.

fconomic models based on evolutionary and ecological theories provide a number of advantages over
standard optimization models. The first advantage is that they place small demands on the abilifies of
economic agents. As pointed out by Simon (1955, 1959}, psychological learning studies indicate that the
abilities of economic entities to acquire and process information may be far less than that required by most
opbtimization models. Another advantage of biologically-based models is their inherent dynamic nature.
Neoclassical models, being based upon equilibrium concepts, do not operate effectively in disequilibrium
states. However, a large part of interesting economic behavior occurs in a dynamic disequilibrium context,
Evolutionary models, being directly based upon dynamic processes, avoid any difficulties associated with
disequilibrivin states. The fact that the same model applies to both equilibrium and disequilibrium conditions

} In fact, it was this work of Malthus’s which proved to be the catalyst for Darwin’s theory of evolution,
C. Darwin, Autobiography, in The Life and Letters of Charles Darwin, Vol. I, F. Darwin (ed.} (London:
John Murray, 1887).



provides a powerful technique for dealing with many problems which have eluded more orthodox solutiens,
including: short-run versus long-run behavior, intertemporal choices, and decisions under uncertainty.

Biologically-based models are no panacea. While they may be based on more realistic assumptions,
they often lack the analytical solutions that more traditional neoclassical models provide. Although certain
properties of the models can be theoretically derived, their inherent stochastic nature requires the use of
simulation for more specific results. However, even in these cases the value of adaptive models must not be
overlooked. Adaptive models may suggest general results about how rapidly, and under what conditions,

behaviors will tend towards optimal patterns. Thus, they could provide strong support for the application
of more traditional neoclassical models to certain situations.

The model of economic behavior developed in this paper is closely related to models used in evolutionary
biclogy. Most of the biologically-based economic models have relied on relatively general results from a
limited set of biological theories. Unlike these models, the model pursued here, based on an artificial genetic
algorithm created by Holland (1975, 1980), relies not only on broad biological notions, but also incorporates
close analogies to more specific biological processes (for example, the recombination of genetic material).
By incorporating specific processes a highly efficient adaptive model can be developed. The use of specific
processes also allows close analogies to be drawn between the model and current theories of economic and
psychological behavior, Before presenting the actual model, a general understanding of the context in which
such models operate is in order. Such an understanding not only illuminates the necessary elements of any
adaptive model, but it also clarifies the types of problems which such models must surmount.

3. Adaptive Systems?®

In order to develop a model of adaptive economic behavior one must first define the overall system
in which the adaptation takes place. By defining the general adaptive system, the salient elements of the
adaptive process can be illuminated, and their properties can be formally examined. Once this is done,

problems which confront any adaptive model will be clarified. From this knowledge an effective adaptive
model can be developed.

In general, any system with an adaptive process can be described in terms of three major elements:
allowable structures, an environment, and an adaptive plan. Individual actors (for example, a consumer,
a firm, an individual organism) interact with the environment through various characteristics described by
structural forms {for example, a purchasing pattern, decision rules, genetic and morphological forms). At
every time period ® an environment determines the performance of the various structures, and provides a
given level of information back to the actor. No assumptions are made about the stability of the environment,
or about the level of information presented to the actor—although some degree of feedback is required.
Finally, dynamic interactions between the environment and the structural forms are determined by the

adaptive plan. Adaptive plans determine changes in the existing set of structures, perhaps stochastically,
from one time period to the next based on the available information.

More formally, any adaptive system can be defined by:
A= {A;,..., AN}, the set of possible structures;
E = {E,,...,Eg}, the set of possible environments;

7 = an adaptive plan operating in discrete units of time indexed by t,
where r: A x It} — (I;

I{t) = the information available to the adaptive plan from the environment
at time #;

1= {w;,...,wn}, the set of operators such that w; : A — P;

P = a probability density function over A;

The interpretation of this formal system is as follows: at any time, ¢, the adaptive plan tests a subset
of structures, A{t), against the environment. The environment provides information, I{t), about the per-

2 The basic elements of this and the next section rely heavily on the work of Holland {1975).
3 For simplicity discrete time is usually assumed.



formance of A(t), and from this the adaptive plan develops a new set of structures: t{A{t), I{t)) — wy, and
w(A{t)) — P(t + 1), which will result in A{t + 1}.

QGiven the above system, one only has to be able to define the environment, structures and the adaptive
plan to use an adaptive model. However, this is not a simple task. Decisions must be made about which
elements of structure—and consequently which elements of the environment—are important to the analysis.
Implicit in this decision is the choice of a feedback and information mechanism in the environment. A number
of difficulties also arise in the choice of an adaptive plan. The ideal adaptive plan must not only overcome
numerous mathematical obstacles in developing well adapted structures, but it must also meet 2 number of
other criteria (such as, operating under conditions of limited information, computational ability, and time
in the case of an economic model).

While most of the difficulties in defining the environment and structures can usually be overcome, the
choice of an appropriate adaptive plan is still problematic. Usually, the important elements of the environ-
ment and structures will become apparent after the context for the model has been decided. Unfortunately,
the choice of an adaptive plan is not as well delineated. In general, regardless of the context, to develop
well adapted structures adaptive plans must surmount the following mathematical difficulties: complicated
structures, non-linear performance measures, and the trade-off between exploitation and exploration.

The structures which an adaptive plan must manipulate can present many difficulties. One major
problem is that an enormous number of structures can confront an adaptive plan. This may be true because
of a large variety of choice may be available, for example, the amount of money an individual should spend
on education, or because of the explosive combinatorics facing even relatively simple situations, consider the
choice of a strategy which determines whether to invite friends over for a dinner based upon their weekly
invitations over the past 5 weeks, this results in 2% or approximately 4 billion potential strategies. The
fact that an enormous number of structures may face an adaptive plan eliminates the potential nsefulness of
an enumerative approach. Furthermore, even when the number of structures is small, it may be difficult to
define the exact elements of any given structure which are responsible for different performance levels. Thus,
while it may be easily determined that a given structure performs wellin a given situation, it may be difficult

to determine which specific element of the structure, or group of interrelated elements are responsible for
this performance.

To produce well adapted structures adaptive plans must rely on various performance measures derived
from information available in the environment. Unfortunately, performance measures may not be the result
of nicely behaved functions. These functions may exhibit a number of undesirable properties, including: non-
linearity (many local optima}, high dimensionality, and discontinuity. Each of these elements complicates
the task of efficiently developing high performance structures.

Adaptive plans must also effectively manage the exploration of new structures and the exploitation of
existing structures. A nwmber of untried structures may contain the key elements necessary for improved
performance. However, if only untried structures were used by the adaptive plan, present performance wounld
be sacrificed by ignoring the best of the already explored structures. Thus, adaptive plans must find efficient
ways to simultaneously explore new structures and exploit existing structures,

Finally, some other criteria must be imposed on the adaptive plans if they are to offer a reasonable
alternative to existing economic optimization models. Desirable plans must not have excessive information,
storage, or manipulation requirements, and should accord well with current psychological theories of learning
behavior. They should also perform well over a variety of environments. furthermore, if the adaptive plans
are to serve as a hypotheses about behavior over finite time periods, and if they are to offer support for
neoclassical cutcomes, they should converge relatively rapidly to high performance levels.

Holland {1975) proposed an adaptive plan which meets the above requirements. Utilizing analogues
to basic biological and genetic systems, Holland has developed a highly efficient adaptive plan in the form
of a pgenetic algorithm.* The genetic algorithm overcomes the aforementioned problems by allowing each
interaction between the environment and an individual structure to represent a sample observation on a
relatively large number of structural forms, and from this information develop new structures which have a
high probability of good performance.

4 A description of the actual algorithm is presented in the Appendix.
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4, The Adaptive Model

The adaptive model presented here assumes that economic agents follow an adaptive plan which modifies
a small set of remembered behaviors based on the relative performance of each behavior. The model assumes
that behaviors are composed of individual building blocks, and that individuals repreduce and recombine the
building blocks of successful actions. The way in which new behaviors are developed is directly analogous
to some specific biological processes. By basing the model on specific processes, implications about the
outcomes of such behavior can be formally derived and modeled. Although the adaptive plan is grounded
in biology, strong sapport exists for the use of such an approach as a2 model of cognitive economic behavior.

The model assumes that every behavior, 7, of an agent can be represented by an l-tuple
A= (i, ey @iy ).

Each {a;;} can take on one of my allele values at every locus j. Individual allele values at a given locus,
or values from a subset of loci, determine the actual structural attributes of A;. This system allows many
structures to be easily specified, for example, suppose a;; has m different values for each allele, then the above
system will allow m' different structures to be defined. ® While this technique of defining behaviors may

appear rather extreme, it does have a natural interpretation: that any behavior is composed of individual
building blocks.

Any time a behavior is undertaken the agent receives a known payoff. The function, p, : A — R, gives
the amount of the payoff, where the form of u; depends on the environment existing at time t. Note that the
payoff is contingent on the existing environment which may change over time, and that the only information
provided to the agent is the payoff for each attempted behavior. Although a large variety of potential payoff
functions exist, some particularly convenient forms for economic applications are standard utility and profit
functions.

At every time period, ¢, agent’s maintain (remember} a small subset of behaviors, A{t). From this subset
the agent develops new behaviors through the application of two basic, but powerful, ideas. The first idea
is reproduction based on performance, whereby those actions which have higher payoffs will be reproduced
(remembered) more often. The second notion is that new actions will be developed by recombining the
building blocks of existing actions. Through the incorporation of these two ideas the model effectively and
easily develops new, high performing structures.

By reproducing actiens based on their payoffs continual improvement in the maintained set of actions
is encouraged. Suppose that the expected number of offspring is proportional to performance, that is,

N(A t+1) = EAEA}::)(;?:%A)/M’ (1)

where N{A',t -+ 1) is the number of A' € A(t) at time ¢ + 1, and M is the size of the population A(t).
This equation implies that those structures which do better than average will increase over time, and that
those which do worse than average will decline. Furthermore, note that if the environment is unchanging the
average performance of the population will increase, putting increased survival pressure on existing behaviors.
Under a system of reproduction by performance, existing behaviors which perform well perpetuate, however
no new behaviors are introduced.

A powerful way to introduce new behaviors into the system is through the recombination of those struc-
tures chosen for reproduction. Direct analogues to basic genetic operators easily and efficiently recombine
existing structures. Omne of the most important genetic operators is cross-over. The cross-over operator
works as follows: two structures are chosen from the population and a cross-over point, z, is randomly
chosen between two of the loci (z € {1, — 1]}, two new structures are formed by combining the alleles from
the first z loci on the first structure with the alleles located at the z+1 to the ! loci on the second structure,
and combining the first z alleles on the second structure with the £+ 1 to ! alleles on the first structure. The
second commonly used genetic operator is mutation. Mutation randomly changes the allele value at a given

5 QOne structural representation which turns out to be convenient for many applications is the binary form,
where a;; = {0,1} V1,7



locus. By using cross-over and mutation the existing structures are recombined in a surprisingly effective
(]
Tanmner.

The combination of reproduction based on performance and recombination via genetic operators results
in a very efficient sampling plan over the space of behaviors. This occurs because although the agent only
explicitly receives information about individual behaviors, he is implicitly obtaining information about the
performance of important building blocks of all actions. This information is compactly stored in the existing
set of structures, and is effectively used in the formation of new structures. Thus, not only does the sampling
plan efficiently sample the space, but it does so with very low information and processing requirements.

By defining behaviors as l-tuples various structural forms, called schemata, can be easily derived. A given
schema, £ € B, is defined by specifying those loci of a structure which must exactly match a predetermined .
allele value, and consequently those loci which may have any value. For example, if the structures we are
trying to represent are meals consisting of either soup or salad for an appetizer, and either hamburgers,
hot dogs, or quiche for a main course (implying a potential of six structures), then one potential schema
would be those meals with soup (admitting three structures into the schema), and another schema would be
meals with quiche as a main course {matching two structures). From the definition of a structure above, one
can show that there exist II_, (m; + 1) schemata over the set of all structures, A. For example, a binary

structure with { = 8 has 3% or 6561 schemata over its 2% or 256 potential structures.

Schemata are of paramount n’n?ortance to the performance of the adaptive model. First, note that
any single behavmr, As represents different schemata, since any given allele of A; can represent either a
schema with a} = a;; {where a} is the value of the schema at locus 7}, or a schema which does not care about
the value at tﬁat locus. Thus, by testing a single structure against the environment the adaptive plan not
only obtains information on the performance of that particular structure, but it also obtains information on
many potentially useful schemata (in the example of the 8 bit binary structure, a single structure contains

about 4 percent {2%/3%) of all potential schemata even though it represents only about .25 percent {1/256)
of all potential structures. 7 ).

By using reproduction and recombination, the adaptive model effectively samples the schema space.
Each test of a behavior in the environment results in payoff information over all of the schemata contained
in the action. With this information the adaptive plan first reproduces those schemata which exhibit good
performance. Then, by using genetic operators, the adaptive plan combines these old schemata with new
schemata and forms new structures which can then be tested. This allows the plan to exploit information
gained about the structures previously tested while simultaneously exploring new structures.

If structures are only reproduced according to performance, from (1) the expected number of schema of
tvpe & represented at time ¢~ 1 will be

E:A'EA(L‘)BE #e{A”) V£t
EAeA(:)F‘t(A)/M T

Multiplying and dividing the right hand side by N{¢,t) vields

N(&t+1) =

»E
N t+1)= ‘(&ﬂ V&t (2)

where ﬁ.f is the average performance of £ in the sample 4(f), and fi, is the average performance of all of the
behaviors in A(Z). Equation (2) implies that with reproduction alone schemata in the original subpopulation,
A(0), which belong to structures performing better than average will increase in the population. However,

% Cross-over and mutation are only two of a large class of recognized genetic operators. While other
operators have been used with some success in other applications, the two used here have been shown to be
highly effective and are sufficient for the basic model.

7 Note that to represent the most schemata per structure it is better to define structures with a small
number of possible values per allele. For example, a structure A; = (a;1,a;2) witha;;=1,...,16for j = 1,2

will also define 256 structures, but will only represent 4 schema per trial (or, about 1.38 percent of all
potential schemata).



reproduction alone does not admit any new structures into A{t), and hence no new schemata are tested and
the sample of old schemata is biased towards those structural arrangements which existed in the original
population.

In order to develop new schemata and to test old schemata in different structural contexts, the cross-over
operator can be employed. The cross-over operator serves two major functions: it creates instances of new
schemata while simultaneously maintaining old schemata, and it links schemata which are physically close
together. Holland (1975, p. 99) showed that if the two originally chosen structures differ at [ positions
to the left of and at R Posibions to the right of the cross-over point then either one of the newly formed
structures will contain 2' — 2'=F — 2= 4 9!~ (Z+R) pew schemata (schemata not found in either of the two
original structures) and 2/=% 4 2!~ 8 — 9!=(L+8) 41 schemata (schemata zlready found in the two original
structures). The second function of the cross-over operator is to encourage linkage of schemata. If one looks
at only the defining positions of a schema (that is, those positions which specify a specific allele value) then
the probability of schema £ being broken by a randomly chosen cross-over point is equal to (I(€) — 1)/(I~ 1)
where [{£} is the smallest number of loci which contain all of the defining alleles for £. Since /— 1 is constant

for all structures, schemata which are closer together have a smaller probability of being separated during
Cross-over.

If the cross-over operation is introduced into the adaptive plan the expected number of schemata of

type £ that will be present at time ¢ 4+ 1 can be obtained by combining (2} with the lower bound® of the
probability of cross-over not breaking up a schema (from above):

nt n
pv(e e+ ) 2 Eu- T ey v, (5

where P is the probability of cross-over. This implies that a schema, £, will increase its representation in a
population as long as
1
nE -
iz i Y £ L.
[1-P(() - 1)/(1—1))] ’

Note that the above equation indicates that longer schemata must have better relative performance than
shorter schemata to increase in the population. Also notice that each schema increases or decreases in size
independent of the dynamics of the other schemata in the population.

The fact that the cross-over operator induces a linkage on alleles which are close together may be
problematic if sets of alleles which induce high performance are separated by large distances on the structure.
In this case the use of only the cross-over operator may discourage the discovery of potentially important
schemata. One way to circumvent this difficulty is to introduce an inversion operator. The inversion operator
randomly selects two breakpoints on the structure, and reverses the ordering of the alleles between these
two points. This allows alleles to be relocated, perhaps linking previously distant but closely related sets.
Experiments with inversion operators indicate that they may be helpful in initial stages of adaptation, but

contribute kittle in latter stages {Frantz, 1972). To avoid unnecessary complexity, the inversion operator has
not been used.

Finally, to prevent the adaptive plan from getting trapped by eliminating initially poor performing, but
ultimately important schemata, a mutation operator is allowed. The mutation operator randomly changes
existing alleles on the structure. By doing so, this operator prevents the elimination of potentially valuable
schemata. Mutation’s value is not in generating new structures to test, since this is equivalent to using
an enumerative approach, but rather in the prevention of entrapment on false peaks. Thus, only a small
probability of mutation is required. Equation (3) can be modified to reflect the influence of mutation on the
sampling structure of the schemata space,

svees 2 - 0D pgo _pioniey v

where P, is the probability of mutation and d(£) is the number of defining elements in £&. All of the previous
results about schemata growth hold with the mutation operator.

8 This is a lower bound since it is possible, if both parents have the appropriate alleles, for 2 schema to
remain intact even H the cross-over point is in the middle of the schema.
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The incorporation of the above genetic operators along with reproduction by performance results in a
powerful adaptive plan. Schemata increase or decrease based only upon their own observed performances.
Holland {1975, pp. 121-40} demonstrated that the rate at which schernata are sampled closely corresponds to
the optimal sampling path in the canonical n-armed bandit problem, regardless of the form of u;. Moreover,
while the adaptive plan is generating an appropriate sampling plan for the existing schemata it is simultane-
ously generating new schemata and structures to test in a way which encourages high interim performance
levels. The plan accomplishes the above, while avoiding entrapment on false peaks.

The performance of this adaptive plan has been extensively studied. Frantz (1972) showed that the ge-
netic algorithm effectively adapted to highly non-linear systems. Martin (1978) investigated the asymptotic
properties of a similar class of adaptive plans. She found that under certain restrictions the adaptive plan
does converge to a set of “good” strategies. DeJong (1975) simulated various versions of the algorithm over
a variety of environments including: continuous, discontinuous, unimodal, multimodal, convex, nonconvex,
low-dimensional, high-dimensional, and noisy functions. His results, later corrected by Bethke (1981}, indi-
cated that the genetic algorithm performed better than commonly used fanction optimization technigues.
DeJong found that the algorithm exhibited rapid initial improvement, but that it usually converged towards
a point near, but not on, the optimal value. Subsequent analysis indicated that this was caused by the
phenomenon of genetic drift, where certain important alleles are lost initially and not recovered by the
population due to purely stochastic effects. DeJong’s analysis also included an exploration of appropriate
parameter settings. In general these results found that: (1) larger remembered population sizes produce bet-
ter long term performance but slower initial adaptation, (2) larger mutation rates prevented allele loss and
provided better initial but poorer long term performance, and (3) larger cross-over rates prevent allele loss
but slowed initial performance. DeJong’s investigation showed that the version of the algorithm presented
here, along with the parameter settings used in the following simulations, performed well across a variety
of environments. Finally, Bethke (1981) extended DeJong’s results. Through the use of Walsh transforms
he demonstrated that those fanctional forms which confounded the genetic algorithm were also the forms
which provided the most difficulty for other commonly used function optimization methods.

To utilize the above adaptive model one must assume the following: (1) behaviors which interact with the
environment can be described as a set of alleles, {a;1,...,a;}, (2) a single performance measure conditional
on the environment exists for any behavior, and (3} systems using the behaviors have: (a) the ability to
remember a limited set of past behaviors and their corresponding performance levels, and {b) the ability to
do simple statistical calculations, perform simple genetic operations, and thereby implement the adaptive
plan. While the first assumption does force a fair amount of rigor on allowable activities, it also allows a large
amount of flexibility in defining behaviors. The assumption of a single performance level being generated by
the environment is consistent with much of the theory present in economics and the other social sciences.
Moreover, since payoff functions may give far more information, the single payoff measure used in the model

serves as a useful lower bound. Finally, the assumptions about the abilities of the system may or may not
hold depending upon the actual system being modeled.

The adaptive model presented here could be applied to either micro- or macro-level systems. At the
micro-level, the model could be applied to the behavior of an individual decision maker. While it is doubtful
that individuals actually use a formal version of the genetic algorithm in their decision calculus, informal
versions of the model are well within the cognitive bounds of decision makers and accord well with some
current theories of psychological behavior. The plausibility of the model may be enhanced in macro-level
applications, where the assumption of various market mechanisms may be sufficient to drive the model.

In order to apply the model to micro-level applications, one must assume that individuals implement
a version of the genetic algorithm. Intuitively, the basic ideas of the model seem rather plausible, that is,
that individual's repeat behaviors with favorable outcomes, perhaps combining them with elements of other
favorable behaviors. ? In fact, some support for the behavioral basis of the genetic algorithm exists in the

? The formal model implies a number of potential experiments which would confirm its applicability
to micro-level behavior. One implication of the model is that the outcomes of repeated decisions should
converge towards optimal behavior. Theé model also implies that decision-makers remember and usze a base
set of structures, therefore, studies attempting to delineate these structures would be enlightening. The
model also gives one some idea about how new structures are formed, thus one test would be to impose the
structural foundations on a given situation, and observe behavior over time. For example, individuals could
be allowed to purchase a market basket of goods at a supermarket every week, and their purchases could

7



psychological literature. Models of associative learning (Estes, 1954, 1961, 1973, 1976) closely correspond
to the above model. Associative learning models assume that behaviors, and their subsequent payofls, are
associated with a sample of the set of characteristics occurring during the event. This notion is very similar

to the model here, where the payoffs to a given structure (behavior} are associated with the schemata in the
structure.

Macro-level applications of the model can be predicated on less extreme assumptions about the psycho-
logical behavior of individual decision makers. At the macro-level, each remembered behavior in the model,
A; € A(t), can be viewed as the behavior of an individual agent in a market, community, etc. If there
exist mechanisms in the system which reward individual agents for good performance, provide information
about the other agent’s behaviors and payoffs, and allow the imitation of other’s behaviors, then the genetic
algorithm is a reasonable model of such a system. For example, in the case of a competitive market, firms
which perform poorly will go bankrupt and be eliminated from the population, while the more successful
firms will be the focus of imitative efforts by competitors and new entrants. These two conditions, which
have strong empirical support, allow the model to be implemented.

The adaptive model presented here offers numerous advantages over earlier models of adaptive economic
behavior. Although one of the primary motivations for developing adaptive models was to alleviate the
reliance on excessive cognitive abilities, many of the adaptive models which were formulated still required
large amounts of either memory or computation. Unlike these models, the model presented here has very
low knowledge and memory requirements: agent’s only have to remember 2 small number of behaviors and
their associated performances. Another advantage of the genetic model is its ability to generalize from past
performances and incorporate valuable elements of important behaviors into new behaviors. Finally, the

theoretical properties of the model, along with its extensive empirical analysis, allow a good understanding
of the model’s behavior.

5. Applications of the Model

In order to demonstrate the usefulness of the adaptive model described above a variety of applications
will be given. The applications cover a broad range of economic topics, including: consumer demand
behavior, uncertainty, market structure, technological change, and economic demography. The examples
were chosen for a variety of reasons: some allow a direct comparison between the adaptive approach and
more orthodox approaches, others clarify various theoretical and practical issues with the model, and a few
of the examples demonstrate the use of the model in situations for which more orthodex solutions are either
cumbersome or do not exist. All of the examples indicate the value of the approach.

All of the applications were structured in such a way that they could be simulated using a computer.?
Simulation is an ideal way to explore the implications of the model. Given the stochastic nature of the
mode!, direct analytical statements about the trajectory of the model through the space of behaviors are -
not obtainable. However, useful probabilistic statements can be formulated. By repeatedly simulating the
problem, the sensitivity of the model to initial conditions and nature can be explored, and general notions
about the likely direction and outcomes of the adaptive system can be obtained.

5.1 An Application to Consumer Demand Behavior

The first application is a standard consumer demand problem. This micro-level application allows a
direct comparison between the adaptive model and a well known optimization model. It also provides a
good illustration of how the adaptive framework can be applied to a standard economic problem. The basic
problem is as follows: a consumer is allowed to purchase two goods, 7 and y, which sell for market prices $1
and $p, respectively. The consumer is constrained by a total income of $7 and has a utility function U(z,y)
which measures the consumer’s well being up to a monotonic transformation.

The optimization approach assumes that the consumer is able to solve the following:

maxU(z,y) st z+py=1T.

=Y

be monitored. ¥From this data, one could look at how the composition of the bundle changes, looking for
indications of cross-over and mutation behavior.

10 The algorithm used and the technical details may be found in the Appendix.

8



To solve such a problem the consumer must have full knowledge of the form of U{z, y) for all values of = and
y, and be able to effectively carry out some form of an optimization technique.

In order for an adaptive approach to be consistent with goal maximizing behavior, some assumptions
used in the optimization approach must not hold. For example, one could assume that although consumers
have well defined utility functions, they are only able to accurately evaluate their utility around bundles
which they have experienced. Another possible break down in the optimization approach is that consumers
do not have the requisite ability to directly maximize the known functions.

The adaptive model is constructed in the following manner. A consumer’s behavior is described by a
vector {z,y} where = and y are the respective amounts of goods = and y to purchase. The utility of every
behavior is given by the function U(z, ) = u(z,y) — I'(z,y), where u(z,y} is a standard utility function and
I'(z,y) is a penalty function for violating the budget constraint. '* The consumer can only remember a
fixed set of behavicers and their corresponding uiility levels. At every time period the consumer reproduces
and recombines his set of behaviors according to the adaptive model. If the model, in its present form, is
directed towards only a single individual then it must be assumed that the consumer can calculate the utility
of bundles which he has not actually experienced (this contradicts one of the arguments for the use of the
adaptive model), furthermore, some method for choosing the actual bundle purchased must be employed (for
example, the consumer could choose the best of the known bundles, randomly choose one of the remembered
bundles either uniformly or weighted by the bundle’s utility, etc.). These problems can be avoided by either
using a more complex version of the genetic algorithm 2 or assuming that the model is being applied to
a group of consumers, each of whom represents one behavior in the model, with identical utility functions
who share all payofl information.

Simulations of the adaptive model were conducted under various price regimes. *® Behaviors were
assumed to be two 8-bit strings, which were evaluated as amounts of z and y to purchase (z,y € [0, 255]).
Consumers were assumed to be able to remember twenty behaviors at any time, or alternatively there were
twenty consumers in the population. The payoff for each behavior was given by the following utility function:
U(z,y) = z975y0%2% + 50~ Iz, y), where I(z,y) = 29754025 £ 50 42 /42 ., v = I —2—pyy, and Ymqq is the
maximum attainable value of . The interpretation of this utility function is straight forward: if consumers
do not violate their budget constraint then they receive the utility specified by a simple Cobb-Douglas utility
function; if the budget constraint is violated then the consumer is not allowed to purchase any goods and
is penalized depending upon the extent of the violation. ¥ The above model was simulated thirty times.
Fach simulation consisted of thirty periods. Behaviors were initially chosen at random. During the first 14
periods the price of y was set at $1; from period 15 onward the price was changed to $2. Income remained
constant throughout at $250.

The results of the simulation are presented in Figures la-1c. In each figure the average value in each
period over all thirty simulations iz shown bounded by a single standard deviation. In order to facilitate
comparison with the optimizing model the optimal values are also presented in each graph. Figure la
shows the average utility of all twenty behaviors during each time period. As expected, initial behaviors are
quickly modified and the average utility approaches the maximum attainable utility. When the price changes

31 An alternative formulation of the model would be to include the budget constraint divectly, for example,
allow behaviors to specify the relative percentages of income spent on the two goods. However, it was thought
that the use of such a formulation would implicitly incorporate the optimization approach, and thus the more
challenging formulation was used.

12 Such a version of the algorithm does exist. In this version, at every time step only one behavior is
chosen to undergo modification. However, in order to simplify the presentation of the original model this
approach was not used.

13 Tor all of the simulations conducted in this paper the following parameters were used: probability of
cross-over = 0.75, probability of mutation = 0.01, and population size = 20. The cross-over and mutation
parameters were within the range of values which DeJong (1975) established as providing good overall
performance for the algorithm in a variety of environments. The population size was somewhat smaller than
optimal, but it was thought that in order to maintain realism the smaller population size would be used with
the expectation of genetic drift, and thus premature convergence towards near-optimal values.

14 Note that since the payoffs are used by the model to form a probability distribution, the utility func-
tion is scaled such that it never attains negative values. The use of the genetic algorithm in constrained
maximization problems is discussed in Goldberg (1983).
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at period 15, utility plummets because many of the behaviors which were previously performing well now
violate the budget constraint and thus incur large penalties. After the price change, behaviors are again
modified and average utility approaches the optimal levels. Figures 1b and lc detail the average demand
paths for goods = and y respectively. As noted in Figure la, the demand for both goods rapidly adjusts
towards optimal levels from the randomly chosen initial behaviors and the price shock in period 15. The
average demand for y is particularly remarkable in its ability to achieve near-optimal levels in only a few
periods of adjustment.

The above example illustrates the use and results of an adaptive model vis-a-vis a standard optimization
model. The adaptive model is easily formulated, requiring only slight modifications of some of the elerments
of the optimizing model, and eliminating many others. The results indicate that while the adaptive model
does eventually approach behaviors predicted by the optimization model, the adjustment process is not
instantaneous. While the analysis conducted here is only preliminary, the results do appear promising, and
it is likely that more sophisticated analyses will provide further insights.

5.2 An Application to Behavior Under Unceriainty

An interesting test of the model under conditions of uncertainty is a probability matching experiment.
Simon (1959, pp. 260-1} suggested that the empirical results of this experiment directly challenge the
optimization approach of economic theory. In the basic probability matching experiment, subjects are
repeatedly asked to choose one of two payoff devices. The payoff devices are designed to pay a fixed prize
to the subject if the subject chooses the paying device, where the paying device is determined with a fixed
probability p and 1 — p respectively. Empirically, subjects tend to randomize their choices of devices in a
way which closely corresponds to the payoff probabilities.

The above scenario has many economic analogues. One example, explored by Rothschild {1974) and
Schmalensee (1975}, is that of a shopkeeper who can set one of two prices, and is rewarded with a sale
according to some given probabilities. The above example can also be formulated as the repeated Battle of
the Sexes problem from the theory of games. This game is essentially a matching game, providing a reward
to both players if their decisions match. An economic example of such a game is a firm (political party)
which is contemplating whether to use a liberal or conservative advertising strategy, where the success of
the campaign will depend on whether the public kas a liberal or conservative mood.

To model the above situation 12-bit structures were used to represent the probability of the individual
choosing the first payoff device. The individual was assumed to be able to remember twenty such structures.
The first payoff device had a probability of payoff equal to 0.75. Two experiments were run. In the first
experiment each structure was evaluated once during each time step, while in the second experiment each
structure was given five draws of the payoff mechanism during each iteration. ** During each time step, all
structures were given an initial payoff of two points and received an additional two points every time they
correctly chose the selected device. The basic problem was simulated 30 times.

The results of these experiments are presented in Figures 2a and 2b. From Figure 2a it can be seen
that the model's behavior is consistent with empirical experiments. After an initial period of adjustment,
the selection probability attains a plateau which closely corresponds to the probability used in selecting the
active payoff device. There is however a large amount of variance around the average path. This variance
is understandable in light of the single trial of the structures per time step which makes the payoff function
highly stochastic. To eliminafe some of this effect, the second experiment was conducted. In this experiment
each structure was given five trials at each time step. The results of the multiple trial experiment are
presented in Figure 2b. As can be seen, not only did the variance diminish, but the probability of selecting
the better performing structure increased by about 0.10. This result is not too surprising since the longer
the number of trials the better the estimate of a structure’s true value, and consequently one would expect
that if the length of trials was extended even further structures corresponding to the optimal strategy (i.e.
probability of selecting the higher payoff device equal to 1} would be developed.

The probability matching experiment is an interesting application of the model. It illustrates the use

15 Por each of these draws, one random number was drawn to determine which payoff device was selected,
and another was drawn to determine which device each structure would have chosen. The same random
number was used for all of the structures on a given draw, implying that the probability evaluation of each
structure would have been made under the identical circumstances.
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of the model under a highly stochastic environment. It also suggests a case where the implications of
the adaptive model and optimization model diverge. Finally, this micro-level application of the model not
only provides insights into a set of common economic problems, but it also allows some intuition into the
underlying psychological basis of the overall model.

5.8 An Application to Market Structure

Adaptive models provide an interesting analytical technique for exploring the dynamics of market struc-
ture. The interaction of firms over time in any given market is a complex process. Although equilibrium
models provide general notions about the directions of market systems and possible steady states, they
do not easily account for the intricate dynamics. Adaptive models, however, can easily integrate dynamic
problems, and therefore are well suited to the analysis of market structure,

The biologically-based model presented here provides a particularly good representation of market struc-
ture. Markets have very close parallels in biological ecosystems. Like organisms living in the same ecosystem,
firms operating in the same market must compete with one another to survive. Firms which can compete
successfully will flourish and grow in size; firms which can not compete will eventually go out of business,
Although the model presented below is rather simple, it does provide some interesting insights.

This analysis will explore the market structure of a standard perfect competition model. The model
assumes that a group of ﬁrms, producing homogeneous outputs, operate in the same market. The market
price facing each firm is gwen by the inverse demand curve F,{Q;} = a — bQy, where F, is the price prevailing
at time ¢, @, = 3; g, g is the output of firm ¢ at time £, and a,b are constants greater than 0. Each
firm faces the same cost function c{g}). Under these conditions the profit for each firm i, =}, is equal to

Ptg;. - C(‘?i)-

An adaptive model was i_mplemented for the above assumptions. Twenty firms were assumed to operate
in the industry which had an inverse demand curve of the following form: P, = 10000 — 0.125Q);. Each firm
adapted its output level, described by a 12-bit binary number {9‘: € [0, 4095}}, based on the payoff function
#i = w4+ 2000000 for = 2 0, and g} = 2000000 + 0.10n} for mf < 0. *® Thus, the higher the profit the
better the firm’s performance. Note that to maintain positive payoﬂs, a requirement of the model’s payoff
function, a firm’s losses were scaled such that higher losses resulted in poorer performance. *7 Initial output
levels for the firms were chosen at random. The above model was simulated thirty times under varying cost
conditions, and total industry output and the Herfindahl-Hirschman (H-H) '® index, a measure of industry
concentration, were collected for each of the thirty periods the model was run.

Two types of cost conditions were imposed on the model. The model was first simulated under conditions
of constant marginal costs, more specifically c(qt) = 5000q}. In the second simulation conditions of increasing
marginal cost were a.ssumed ¢{gi) = 1.25(¢}) These cost functions were designed so as to give the same
perfect competition equilibrium at ¢i = 2000V ¢. A priori, one would expect that the market dynamics
would be different under the two cost conditions. In the case of constant marginal costs, if the market price
exceeds the $5000 marginal cost, any firm can increase its profits by producing more output. Unfortunately,
if 21l firms attempt to do this the market price may fall below $5000 implying losses for all of the firms in the
industry. In the case of increasing marginal costs the incentive for a firm fo increase its output is reduced,
since even without a market price decrease increases above some limit will reduce profits {in this case above
the point where gi > P,/2.5). Thus, one might expect more stability in the second case.

The simulations confirm the a priori expectations. Figures 3a and 3c present the average of the total
industry output for the two cases. In the case of constant marginal costs (Figure 3a) output levels are
always above the output level predmted under perfect competition (2000 x 20 = 40000). This reflects
the large incentive for firms to increase their output levels at near-equilibrium price levels. In the case of
increasing marginal costs, the industry output level closely oscillates around the expected equilibrium output.

16 The model was somewhat sensitive to the form of the payoff function. If the payoff function was
formulated without reference to the initial conditions, it could easily occur that large negative profits wounld
be earned by all firms. This would result in inadequate differentiation between the production plans, and
therefore nullify the effectiveness of reproduction by performance and the cross-over operator.

17 This is similar to the use of penalty functions discussed in the application to consumer demand.

18 This index is defined as H-H = 3, s, where s; is the market share of firm .
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More insight into the actual dynamics can be obtained from the H-H index levels recorded in Figures 3b and
3d. Under constant marginal costs market conditions the H-H index remains fairly constant at about 0.066,
while under increasing marginal costs the index rapidly falls from its initial value of 0.067 to a relatively
stable 0.054, closely approaching the perfectly distributed index value of 0.050. 19

The mode! of market structure implemented above is only one example of the potential use of an adaptive
approach. In the simplified case above, firms were only allowed to adjusted their level of output to prevailing
market conditions. However, one of the strengths of the adaptive model formulated here is its ability to
easily incorporate multiple criteria in the formation of new decisions—this power is especially evident in the
cross-over operator. Thus, a market analysis including such factors as advertising decisions, product quality
choices, etc., would certainly be feasible.

Adaptive models are an appropriate choice for the analysis of dynamic systems. As in the case of
market structure above, the model can easily be formulated to encompass a complex dynamic system. Once
formulated, nseful hypothesis about the behavior of such systems can be generated. Given the importance
of dynamic economic systems to both theoretical and policy issues, such analyses would prove valuable.

5.4 An Application to Technolagical Change

Studies of technological innovation have indicated that its economic impact may be substantial {Solow,
1957). Unfortunately, optimization models of technological change have not been able fo reconcile the
existing empirical knowledge (for a summary see Nelson and Winter, 1982, pp. 202-4}. The inherent
dynamic nature of innovation along with the necessity to explore previously unknown processes, present
a formidable task to maximization models. Adaptive models, with their explicit dynamic nature and low
information requirements, are a natural choice for the study of innovation.

The genetic model allows an interesting analysis of technological change. The model admits the pos-
sibility of technological innovation (via the mutation operator}, and also allows firms to imitate successful
innovations to varying degrees (through the reproduction and cross-over mechanisms}. This approach is
consistent with the empirical reality of the innovative process. The model presented here assumes that the
technological innovation is initially unknown to the firms and is only discovered stochastically in later time
periods. The innovation is initially unknown due to either pure technological constraints, for example, the
use of atomic power prior to 1940, or constraints imposed by tradition, for example, the organizational
structure of the firm. *® Industry demand is assumed to be infinitely elastic and inputs are assumed to be
costless, thus, all firms attempt to maximize outpus. *!

The model assumes that each firm ¢ in the industry has a Cobb-Douglas production function of the
following form: gq; = AY25KP-5L05 where A;, K;, and L; are the respective amounts of the innovative,
capital, and labor inputs used by firm 1. The innovative input is a factor of production which has been set
by all firms to the same value either by tradition or by previous technological constraints. ** The industry
is simulated for thirty periods. Initially, the twenty firms in the industry randomly choose production plans,
described by three five-bit numbers (with 4, K, I € [1,32]), constrained only by the fact that 4 was equal
to 1 for all firms. After the 11th period, the innovative factor of production was no longer constrained, and
firms were allowed to vary the amount of A. The payoff to each firm was simply the quantity it produced.
Bach simulation was conducted thirty times, and the resulis are presented in Figure 4.

19 For comparison purposes, if 19 of the firms in the industry had equal market shares then an index value
of 0.066 would imply that the last firm had a market share of 17.3 percent whereas a value of 0.054 would
imply a market share of 11.2 percent.

20 An interesting implication of the problem of genetic drift (that is, the loss of initially poor performing yet
ultimately important alleles to the entire population), is that an industry could get entrapped by tradition.

21 The imposition of a more complex demand structure and input prices could easily be incorporated.

22 A more complex functional form, where the marginal product of A; was negative for small levels of A;,
was also tried. It was thought that this production function might provide a better justification for the lack
of industry diversity in the use of A: every time a firm had tried to increase its use of A it had lower output.
This example may be consistent with some forms of technological change, for example, mass production
where low levels of utilization are not productive, and it is only when a certain threshold level is passed that
returns increase. However, the results of this more complex functional form were not qualitatively different
than the results of the simpler form, and therefore were not presented.
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Figure 4 conforms with a priori expectations. Initially, firms steadily increase output levels starting
from their randomly choser production plans, By the 11th iteration the average indusiry output is close
to the maximum achievable level. After the 11th iteration innovation is allowed in the industry. The way
innovation occurs is through the mutation operator randomly changing one of the bits describing the amount
of A to use in production (the probability of this happening during any given period is 0.634 (= 1 —.99'%%)).
Once innovation occurs, other firms are likely to incorporate the use of the innovative output with their
current production plans. This results in relatively rapid output growth in the industry. The period of rapid
growth Egticeable slows after about 10 periocds and a slower transition towards the optimal output level
ensues, -

In order to separate the process of innovation from that of imitation the initial model was simulated
under two variations. The first variation, designed to capture the innovative component, allowed only
mutation to operate in the model (that is, each firm was always given one offspring and no cross-over was
allowed). The output path of this simulation is given in Figure 4. It is apparent that with only innovation
operating in the environment almost no increase in productivity occurs. The second variation of the model
allowed mutation and reproduction according to performance, but no cross-over. Figure 4 indicates that
this variant had an output path which was almost identical to that of the initial simulation, with only a
slight degradation of output levels in latter periods. This output path indicates that the importance of
imnitation was not in recombining any innovation with existing goods, but only in imitating more successful
innovators. This result is consistent with the form of the production function used in these experiments,

since the innovative input provides a monotonic increase in output regardless of the configurations of the
other inputs.

The genetic model is a good choice for the study of technological change. The dynamic market context in
which most innovation takes place makes the adaptive approach appealing, Moreover, the strong innovative
and imitative components of the genetic model closely match the empirical reality of technological change.
As the example above Hlustrates, by varying the parameter values of the model the relative importance of

such effects can be effectively examined, and insight into a problem which was previously inaccessible can
be gained.

5.5 An Application to Economic Demography

The transition of societies from conditions of high fertility and mortality to conditions of low fertility
and mortality has been an important topic of much social science research. While initial theories apparently
accounted for the empirical reality, recent evidence, most notably from the European Fertility Study con-
ducted by the Office of Population Research at Princeton, has raised a number of questions about the actual
mechanisms involved. This research indicates that an adaptwe approach may be an effective way to model
the phenomenon of the demographic transition.

Studies of Europe’s demographic transition have revealed many interesting results {for a summary see
van de Walle and Knodel, 1980). Before the transition most populabxons experienced a natural fertility
regime, whereby couples chd not consciously limit their family size. The onset of the transition is not con-
sistently explained by the level of industrialization, urbanization, education, or mortality changes. However,
there is strong evidence that the innovation of methods of fertility limitation at the start of the transition
may have played a key role. Once the transition started a rapid and monotonic change towards substantially
lower levels of fertility and mortality occurred, generally following regional linguistic and cultural clusters.

A macro-level adaptive model captures many of the components inherent in the demographic transi-
tion. The strong linguistic and cultural components of the transition, along with the apparent impact of
migrants from areas experiencing the transition on pre-transitional areas, implies that the How and diffusion
of information and ideas was important. The evidence of the innovation of family limitation technology alsa
supports an adaptive hypothesis.

A relatively simple adaptive model captures some of the major components of the demographic tran-
sition. Suppose that couples are only concerned about the number of surviving children, and attempt to
achleve an “ideal” family size. This can be operamona.hzeci by the foliowmg utility function, U(B,) =

— (1B, — B*[)?%, where A is a constant, B, is the number of surviving children, and B* the ideal family

23 1t is likely that the reason why more rapid convergence towards the optimum doesn’t continue is the
initial lack of “genetic” diversity in the behavior describing the amount of the innovative input to use.
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size. The number of surviving children, B, = Be¢p, where B is the number of births without any fertility

limitation, ¢ is a measure of consraceptive effectiveness (¢ € [0,1}), and p is the probability of surviving from
birth to adulthood.

Two simulations were conducted. In both of the simulations individuals were allowed to adapt 10-bit
structures which represented the effectiveness of fertility control. Initially, all of the structures had a value
of 1 (that is, natural fertility) and innovation was allowed to take place. In the first simulation the following
parameters were used: A =4, B = 13, B* = 2, and p = 0.5. The second simulation used identical parameter
values with the exception of the survival parameter which was allowed to increase by 0.05 each period until
it achieved a value of 0.8, This was intended to simulate the concurrent mortality decline experienced by

some of the European countries and most developing countries today. Each simulation was carried out thirty
times.

The results of the simulations are shown in Figures 5a~5d. Figure 5a {5c) shows the transition path
of the average fertility control parameter for the first {second) simulation, and Figure 5b (5d) graphs the
corresponding average births and surviving children. The figures indicate that once some innovation is
introduced infto the population (this occurs with probability 0.866 = 1 — (1 — 0.01}*%) a rapid transition,
within about 12 iterations, can occur. A comparison of Figure 5a with 5b indicates that with a declining
mortality rate, the transition occurs at a much more rapid pace.

The inherent dynamic and innovative components of the demographic transition make an adaptive
modelling approach promising. Although the above analysis is only preliminary, it does indicate that likely
transition paths can be generated and compared. Through the use of such an approach it is likely that

a better understanding of the important empirical facts surrounding the demographic transition can be
obtained.

8. Conclusion

In all of the above examples the adaptive model appears to be a valuable approach to modelling economic
and social phenomenon. In general, the results appear extremely promising. The model has proven to be
very flexible, and was easily formulated for a variety of diverse applications and environments. In each of the
applications the model performed admirably. In those applications where more orthodox solutions existed,
the outcomes of the two models often corresponded. When the predictions of the two models differed,
the adaptive model appeared to be more consistent with the existing empirical reality. The applications
indicated that the transition paths of the model are relatively consistent, and can be usefully analyzed. #*
By changing the parameter values of the model, qualitatively different transition paths were generated, and
therefore a form of comparative “statics” is available. The model did not appear to be sensitive to minor
variations in the parameter values. However, unlike optimization models, it is sensitive to the form of the
payoff function. 2° Although all of the examples used relatively few behavioral parameters, other empirical
studies of the model indicate that its performance with multiply parameters is not substantially diminished,
and therefore this approach should provide an effective technique for modelling much more complex forms
of behavior.

The theoretical properties of the model along with the empirical results from above, provide a great deal
of insight into the behavior of the model. The dynamic nature of the model is explicit and of paramount
importance to its implications. Some general results are: (1) that given enough ftme and the proper conditions
agent’s behaviors will tend towards optimal patterns, {2} that adjustment to new environmental conditions is
initially very rapid, but quickly slows as the behaviors approach optimal levels, and (3) that various parameter
values may generate testable hypotheses (for example, smaller population sizes may be expected to rapidly
adapt to near-optimal behaviors, large mutation rates prevent premature convergence at the expense of poor
long term performance, low cross-over rates may depreciate performance, and various parameter settings

%4 The statistical techniques used in all of the applications are relatively primitive. More appropriate tech-
niques, such as multiple regression methods designed for panel data, could be employed in more sophisticated
analyses.

25 Since the model uses the payoff function to form a probability distribution over the behaviors, the form
of the function is important. Payoff functions have to always be positively valued, and transformations
which affected the ratic of the function’s value relative to its mean may lead to different outcomes. These
restrictions may hamper the use of the model in some situations.
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may influence the variance of the expected path). These results indicate that the model can be usefully
employed in further economic analyses,

By relying on specific biclogical concepts, an interesting model of adaptive economic behavior has been
developed and analyzed. The reliance on specific biological processes has reduced the ambiguity which has
confounded previous biological-based models, and has provided sufficient structure to explicitly explore the
model. The basic assumptions of the model were examined, and they appear to accord well with current
economic and psychological theories of behavior. The model was readily applied to a variety of phenomenon
and interesting insights and implications were obtained, Furthermore, based on the pioneering work of
Holland et al., the theoretical properties of the model were derived. These properties indicate that the
basic model has a strong optimization component, 2% which suggests that the optimization and adaptive
approaches are not mutually exclusive paradigms. The relatively simple foundations of biologically-based

models along with their wide applicability and interesting implications, naturally make them a good candidate
for further analysis.

26 T fact, the cited empirical studies indicate that the model outperforms current optimization techniques,
which one assumes maximizing agents will be employing.
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APPENDIX
THE GENETIC ALGORITHM

The genetic algorithm used in this analysis has the following form:
1. Initialize A(¢) by choosing M structures at random.

2. Set £t =0.
3. Calculate the performances of each structure ¢ in A(i):
a. Let Vii] = pe(A:i(2)).
b. Let & = Yieaq) VIEL/M.
4. Reproduce structures in A(t). For each 1 € A(#):
a. Allow TRUNC{V[i}/2:)} offspring.
b. Allow an additional offspring with probability (V[z]/f.) — TRUNC(V [4}/8:).
¢c. Adjust the population if the number of offspring is not equal to M.

¢l. If the number of offspring < M then allow the best performing structure in the new population to
produce additional offspring.

¢2. If the number of offspring > M then eliminate the poorest performing structure(s).
d. Randomly mix the reproduced structures.
5. Cross-over the newly reproduced structures. For each pair in the new population do the following:
a. With probability Pe:
al. Randomly select a cross-over point z € [0,{ — 1].
a2. Form two new structures by crossing over the two parents immediately after the zth allele.
6. Mutate structures. For each locus of each structure do the following:
a. With probability P, change the allele value at the locus to its alternative.

7. Let =t 1.
8. If t <« 30 goto step 3.

9. End.

All simulations were conducted on an IBM PC1 or Zenith 150 equipped with an Intel 8087 math co-
processor. The program was written in Pascal and was compiled using Turbo Pascal-87 version 3.0. Psuedo
source code is available upon request.
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