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question in economic, organizational, and computational theo-
ry. Over the past one hundred years, society has witnessed the
rise of large industrial organizations—at times encompassing hundreds
of thousands of workers, many of whom are devoted to directly or in-
directly “managing” the various activities of the organization.
Notwithstanding the economic and social importance of such organi-
zations, with a few rare exceptions (for example, Simon 1981, Sah and
Stiglitz 1986, and Radner 1992) economic theory has not been greatly
concerned with questions concerning the creation, design, and opera-
tion of information processing organizations. Of course, other groups
of researchers, ranging from sociologists to computer scientists! have
focused on various complementary aspects of the basic problem under
consideration in this chapter. While the focus here will be relatively
narrow, interested readers can find elements of this broader organiza-
tional view contained within the many chapters of this book.
Suppose we are given a set of information processors each limited in
its ability to accommodate and analyze incoming information (for ex-
ample, workers in a firm or CPUs in a computer}), What is the most ef-
fective way to organize these processors? One approach to answering
this question, pursued by Radner (1992) and others, is to develop for-
mal mathematical models of information processing networks. This
approach provides a useful formal framework from which to derive
some valuable insights into, for example, the economies of scale of op-
timized systems. One potential problem with the mathematical ap-
proach, however, is that the inherent complexities of organizations

The organization of information processing systems is a central
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may require extreme simplification before analytic techiniques become
tractable, and thus the scope of the subsequent analysis may be severe-
Iy restricted.

In this chapter a complementary approach is pursued that relies on
computational experiments.? Such an approach removes a variety of
the current limitations of the formal mathematical approach, thus al-
lowing us, at the very least, to foreshadow likely formal results. More
importantly, the computational approach makes accessible a variety of
questions to which pure mathematical answers may not be forthcom-
ing. For example, questions about learning in organizations and be-
havior under a large range of environmental conditions can be easily
explored via computational experiments. '

The analysis proceeds in two related directions. The initial focus is
on the generic properties of randomly generated organizations. I ana-
iyze the implied behavior of organizations generated by randomly
connecting some simple, predefined processing elements to one an-
other. While the analysis of random organizations may, at first, appear
frivolous, in fact it offers the potential for generating some critical in-
sights into organizational structure. As has been shown by Kauffman
(1991) in numerous biological contexts, randomly generated struc-
tures often exhibit “order for free”—that is, even though structures are
randomly generated, the resulting behavior that emerges from such
structures is well behaved. My analysis supports this “order for free”
hypothesis in the context of information processing organizations.

Such “order for free” may fundamentally aiter our view of these sys-
tems. In such a world, the creation of large, complex, productive struc-
tures no longer requires either the directed insight of a rational plan-
ner or the highly unlikely congruence of fortuitous events, but rather
it is the inevitable result of emergent structure. Even crude approxima-
tions to optimal structures are likely to persist, and provide the grist for
survival and improvement.

The second area of analysis is on the ability of organizations to adap-
tively learn better structures. Could a simple process of adaptation lead
to the development of superior structures? What structural characteris-
tics are likely to emerge from such an adaptive process? Moreover, in-
sofar as the adaptive algorithm has the ability to find good solutions to
the problem of maximizing organizational performance, the structures
emerging from the algorithm may provide valuable hints about opti-
mal organizational design under conditions t00 difficult to solve for-

mally.
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The Model

T}‘xe goal of organizations in this model is to solve a series of informa-
tion proce:ssing problems, the solutions of which are assumed to allow
the organization to effectively respond to its environment. For exam-
ple, .ﬁrms may need to combine various accounting and market infor-
mation to make operating decisions that affect profitability. While
Qrms need to get correct answers to such problems, they also face a va-
riety of other challenges. For example, ceteris paribus firms that can
a'nswer these problems faster and with fewer processing resources are
likely to have a competitive advantage over other firms. While my
modeling approach can easily accommodate various firm objectives,
focus only on speed: firms that can solve their problems quicker the;n
other firms are considered to have a competitive advantage.

Following Radner (1992), in the analysis below I assume that firms
face a set of fully decomposable (associative) problems.3 The notion of
decomposability implies that while every component of the problem
pmst be incorporated into the solution, the order in which this occurs
is not important. For example, the process of adding a series of num-
bers is fully decomposable, since the order in which the addition is
done does not matter. Obviously, the advantage of decomposable
p_roblems is that they can always be solved in a decentralized manner
since sub solutions (for example, sums of small groups of the numbers
to‘be added) can be easily incorporated into the full solution (by sum-
ming up the sums of the sums). Therefore, such problems are
amenable to being solved by decentralized organizations.*

Organizational Structure

Organizations are composed of a set of interconnected nodes, each of
w‘hich represents a simple processing resource. At the top of the orga-
nization is a single (root) node that needs to accurately calculate the
ultimate solutions to a set of problems that the organization faces. For
example, one could view the root node as attempting to make a pro-
Fiuction forecast based on a variety of incoming information concern-
ing consumer demand, production costs, etc. Every node in the orga-
nization may be connected to one or more child nodes; every child
node, though, can have only one parent node. The connections repre-
sent communication channels for the flow of information between
two nodes,

The incoming elements of each problem reside in a data queue.
Each node has the possibility of being directly attached to this queue,
Nodes that have no children are considered to be terminal nodes and
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Figure 1. The operation of two simple organizations.
(Assumes a slng‘ig:, five-clement (a, b, ¢, ¢, e) addition problem in the queue, and a node
firlng sequence that always works backwards from the highest numbered node during ev-

cry time step.)

are always attached to the queue. Information ﬂm’vs ”Ezpward”
through the organization, always moving in a single direction from
the data queue, through any intermediate nodes, and eventu.aliy end-
ing at the root node. The top half of figure 1 illustrates two simple or-
ganizational structures. o '
Every node is assumed to be able to process a lmnt.ed .amount of in-
formation during any given time step. Processing is limited to the fol-
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lowing three tasks: deciding what problem the node should be work-
ing on, seeing if it is possible to incorporate any subsolutions to this
problem from at most one of the node’s downstream connections {ei-
ther a child node or the data queue), and deciding if any more process-
ing is required by the node on the current problem. Nodes must wait
for their parent nodes to retrieve information before they can begin
working on the next problem.

Each organization needs to “solve” a given number of problems,
each composed of a fixed number of elements (pieces of information).>
For example, an organization may need to find solutions to ten addi-
tion problems, each requiring the summation of five integer values.
The information for each problem is placed in the data queue, Each el-
ement of the queue contains both a problem identification number
(PIN) and the associated data. (Thus, if the first problem consists of
sumiming up the numbers 12 and 15, and the second problem consists
of summing up the numbers 21, 34, and 56, the queue would be repre-
sented as un‘w 12‘{!&!{1)' (Ipiw lsdam)r (zpinf Zldata)l (Zpr‘n' 34dat(z)! and
@pins Séf,ams.) The problems are queued in order, and the queue is ac-
cessed one element of the problem at a time. Any time an element of
the problem is read off of the queue, the queue automatically advances
to the next element. Each organization faces the same set of problems.

Organizational Operation

The global behavior of an organization is the outcome of a simple set
of “standard operating procedures” governing the behavior of each in-
dividual node. The operating procedures assume limited information
processing capability for each node, and confront a number of critical
timing issues (such details are often trivialized in theoretical discus-
sions, see below). The operating procedures were created so that nodes
can operate in a completely decentralized environment, requiring only
limited information about the activities of the other nodes,

During each cycle of the organization, every node in the organiza-
tion is “fired” once. The sequence of firing is either random or ordered.
Under ordered firing, lower level nodes in the organization are al-
ways fired before upper level ones, that is, children are always fired
before their respective parents. Obviously, ordered firing requires a
high level of synchronization of the nodes’ activities. The prerequi-
sites for such synchronization include the ability to easily communi-
cate with each node, a general “knowledge” of overall organizational
structure, etc. The impact of coordinating the firing of nodes will be
of central concern to the analysis.

Each node can have one of three internal states: (1) inactive, in
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which case the node is not currently working on any problem; (2} ac-
tive and unfinished, in which case the node is currently working on a
problem, but it has not finished processing because lower nodes either
are, or potentially could be, working on the same problem;6 and, (3) ac-
tive and finished, in which case the node is done working on the prob-
Jem and is ready to pass its solution to a higher node. Each node in the
organization also keeps track of the PIN it is either working on or ex-
pecting. Initiaily, all nodes are set to inactive and are expecting PIN 0.
When an inactive node is fired, it tries to activate. It first checks the
PINs of all of its active connections (the queue, if the node is attached,
and any active children it may have) and its inactive children. If the low-
est PIN of its inactive children is less than the lowest PIN of its active
connections, then the node goes to the lowest inactive PIN and remains
inactive—thus, it will not start up if there is the possibility of a lower
numbered problem eventually coming in on one of the inactive connec-
tions. If, however, the lowest active PIN is at least as low as the lowest in-
active one, then the node begins to calculate a new solution and acti-
vates by marking itself as unfinished on that PIN—thus, it begins
processing as soon as it is clear that no earlier problems can be passed up
from below. By assumption, this activation process requires no energy
from the node.” Once activated, the node is marked as unfinished and
continues to the processing step described in the next paragraph.
A node that is active will always attempt to work on the problem giv-
en by its PIN. First, it checks its own children, in random order, to see
if any of them have finished working on the problem. If it finds such a
child, the node will incorporate the child’s solution into its own, and
then mark the child as inactive and increment the child’s PIN by one.
The incorporation of any child's solution takes all of the node’s energy
for the step, and thus the node quits checking its children at this point
and tests if it is finished (described below). If no children are finisired
and the node is attached to the queue, it checks to see if the queue has
an element of its current PIN—if so, this element is incorporated into
the node's solution, the queue is advanced, and all of the node’s energy
is used for the step.

Finally, the node checks to see if it has finished with its current PIN.
The node is finished if and only if all of its subordinate connections
(both active and inactive children and, if relevant, the queue) are on
greater PINs. (Since a child’s PIN is immediately advanced when it fin-
ishes, this rule potentially allows the parent node to finish on the
same cycle that it incorporates a child’s solution.) If the node is fin-
ished, it marks itself as such and remains active. The node remains in
this state until a parent node incorporates the finished solution and

deactivates the node.
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This procedure is followed for each node during a given cycle. Once
S:lerydn;)de has been fired, the root node is checked to see if it has
;)f t‘;-(fe Ct ua;e cuirent tiimbiem {that is, if it has finished processing the PII\}

rent problem). If so, the root node i i i
its PIN is incremented by one. © s marked a5 inactive and

The firing procedure and activation rules outlined above insure that
;E)per nodes never get ahead of lower ones, and that the problems in
the queue are always solved in order. An organization is finished wﬁen
it has solved all of the problems in its queue.
wgek;]eti;otto.m table iof figure 1 illustrates how this processing occurs

ere is a single, five-element (a, b, ¢, d, ¢) additi i
the queue. The nodes are fired i ! tromn the bighest tc (e Lo
. in order from the highest to the |
numbered node during every ti i : anario the
y time step. Given this s i
left-hand organization behav e step. node
es as follows. In the first ti
3 activates on PIN 1 and accu rom the oo
mulates the first element f
{a). Next, node 2 activates on PIN P
) 1 and accumulates the s
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;’fg {})é t;e so!utuzin since both of its children have not finished process
. e second time step, nodes 2 and 3 each accu .
. mmuilate one mo
zlementdoif of the queue (leaving node 3 and 2 “knowing” respectiveg
m—;;; fenany :)f(?;; nodle 1 remains active but still cannot begin to accu-
e solution. In the third time step, node 3 i
the last element of the into i on and marks fiself 2
queue (¢} into its solution and marks it

' : : self as

ggmhed (since its only downstream connection is the gueue which is
neg _emgty). When node 2 fires during this step, it finds that there is
dm;gﬁm the queue, and thus it also marks itself as finished. When
go' ; | res during this step it first checks with node 2, finds that it is
nished, and therefo're accumulates the child's solution (b + 4). In re-
;iig:;- to x?ode 1 taking its solution, node 2 proceeds to the next PIN
ing inactive and unfinished (this process i i J

eco ; s designated as st
3}3. Finally, on the fourth tirne step, nodes 3 and 2 fire agd remain u(:g
;Oaéx;giectil, ni‘f}? 1 ;ires and accurnulates the solution of node 3 {(giving

he solutionofa + b+ c+d +¢), node 3 i

, s advanced to PIN
i, and' ias‘tiy node 1 becomes finished. At the end of this time step, the
ﬂi{g)zlilrg;a;on hz;: successfully solved the problem in the queue’ Al
e right-hand organization in this di ame
number of nodes as the left-hand i e s e
525 - one, it also has a queue connection

f;onx%'} n?de 1. This slight change in structure allows the right-hand or-

g T;lzat;on' to complete t_he identical calculation in one less time step
i ssrggtixzx;zoé a CY(C;S giaz'l)the above operating procedure differs fro;r'x

adner . Here, nodes are allowed to u

se the result

fron} Iow?r nodes that have been fired on the same cycle. Thus theu of
ential exists for much more processing to be undertaken in a éiven g)ﬁ



314 MILLER

cle under this system than the one used by Radner For example, if
nodes are fired from the bottom up, the potential exists for a solution
to quickly move upward in a single cycle as the lower nodes_finish
their processing and pass their results to the upper ones. Obviously,
the mode! could be modified to prevent nodes from using results ac-
quired on the current cycle. Doing so, however, would make issues _of
synchronization moot and eliminate a central question of the analysis.

The algorithm described above represents a simple set of standard
operating procedures for the organization. Obviously, many other pos-
sible procedures exist, and, comparisons of such altemat.wes may be an
interesting area of study. Some simple experiments with varifints of
these procedures indicate that the qualitative results appear falrly. ro-
bust to simple changes. Nonetheless, I leave a more exghmt analysis of
this topic for future research. Note that the computational mpdei de-
veloped above is easily modified to incorporate new assumptions o,
for example, the capabilities of individual nodes, the costs of observing
data or communicating within the organization, etc.

Creating “Random” Organizations

“Random” organizations are created for the analysis of both generic
properties and evolutionary behavior. Ozganizatio.ns _are’ randon?ly
generated in the following manner. First, the organization’s final size
(number of nodes) is randomly chosen from the intfegefs be_tv?een one
and fifty. Starting with a single root node, the orgamz'atxon. is iteratiye-
ly constructed by adding one new child node per iteration. During
each iteration, a parent node is randomly picked from one of th_e orga-
nization's existing nodes and a child node is added. Thus, during the
first iteration the second node always attaches to the root, during the
second iteration the third node will either attach to the root or the sec-
ond node with equal probability, etc. This iterative process continues
until the final size Is achieved. After the organization is fully generated,
any terminal nodes are automatically attached to the qu‘efje, and each
interior node is attached to the queue with a 0.5 probability.

Organizational Evolution

1 explore the evolution of organizations through a sim‘pie ada‘ptive
computation procedure based on Holland's (1975) gene?w alg.orl'thm.
This allows the analysis of issues of learning and adaptation within an
organization. Can organizational structures evolve that are better at
meeting processing objectives? [f this is the case, what are the struc-
tural elements that promote superior behavior? o
Tor the genetic algorithm, a population of fifty random organizations
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was initially generated. An iterative procedure was then invoked that
Creates new populations of organizations by selectively reproducing
and modifying organizations in previous populations. Fach organiza-
tion is given a “fitness” measure, here taken to be the time required
(number of cycles) to solve the set of problems in the queue, with less
time being preferred to more.® A new population of fifty organizations
is then generated by randomly selecting (with replacement) two orga-
nizations from the old population and placing a copy of the better one
into the new population—this “tournament selection” is repeated fifty
times. Note that this selection procedure tends to generate a population
of better performing organizations (although there is some chance that
the worst performer will be included and (or) the best will be excluded).

The fifty organizations selected for reproduction are then randomly
paired, and with a 0.5 probability undergo two genetic operations. The
first genetic operation selects a random node from each organization
(excluding the root), and “swaps” the two chosen nodes along with all
of their children (that is, the corresponding subtrees) between the two
organizations.” This swapping procedure is a “crossover” operator, and
is similar to Koza's (1992) genetic programming crossover operation,
Crossover allows useful building blocks (suborganizations) to be main-
tained and recombined in, perhaps, a more productive manner. The
second genetic operator used is mutation. Each organization has an
equal chance of undergoing either zero, one, or two mutations. For
each mutation, either: an interior node is selected (if possible} and the
queue connection status of that node is altered to the opposite condi-
tion {if it was not connected to the queue, it becomes connected and
vice versa), a node is randomly chosen and a terminal node is added to
it, or a node (other than the root) is randomly chosen and deleted.10
With equal probability one of these three types of mutations is per-
formed. The mutation operator models small random changes to an
organization’s structure.

After each pair of organizations is subjected to genetic operators (or
not), the newly formed population replaces the old population and a
generation is concluded. The system is iterated for fifty generations,
foliowing the cycle of gathering fitness measures, selection, and modi-
fication described above for each successive population. At the end of
the fifty generations, the best organization existing in the final popu-
lation is used in the data analysis. Since the algorithm has stochastic
elements, fifty separate trials of the genetic algorithm are conducted
and analyzed for every condition. Although genetic algorithins require
a variety of parametric and algorithmic choices, they tend to be robust
to reasonable changes in these choices. Limited experimentation with
the algorithm used here support this conclusion.
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The evolutionary procedures outlined above model simple notions
of organizational adaptation. Organizations that perform poorly rela-
tive to others are eliminated from the system and replaced by new
ones. New organizations “model” themselves after more succ'essful OI.d
organizations—either directly copying th_em or creating a umq?e vari-
ant composed of “parts” of old organizations (crossover) and a few mi-

nior alterations (imutation).

Some Experiments

The model developed above allows the conduct‘ion ofa varigty of com-
putational experiments on adaptive organiza.tional bgbavmr. Here, |
focus on two questions. First, how important is the ability to synchro-
nize the individual information processors (nodes) to the performa‘nce
and structure of organizations? Note that in this m.ociei, the. cqordma—
tion issue is not whether processing units are working or shgk'mg, but
rather in what overall order they are activated. The actual ability of an
organization to coordinate processing will depend ona numbgr of f;(.:'
tors, including communication technology, repogmtxon ofa hzerarf: i-
cal structure, standardization of the time required for task compietxog,
etc. The second question [ explore is the impact of the number of prob-
lems an organization faces on its structure apd p'erformance. Do orga-
nizations that face only a single problem differ in ﬁlmdan‘lent.al ways
from those that face multiple problems? Such a questzpn arises in orga-
nizational theory for issues such as designing orgamzatiorfs that can
quickly handle small unusual challenges (for example, during at_cns;sl
(Carley and Lin 1995)) versus ones that need to process a continu
incoming data. _
Str;;:lt(;\fron;;ctors EZﬁscussed above are impienjien‘ted in the follc_)wu.xg
way. The synchronization of processing nodes is either ordered ﬁrmgf in
which case child nodes are fired before parent noc.ies, ot random firing,
in which case nodes are fired in random order d%mng each cycle.b Iint::-
itively, organizations that have coordinated firing should be able ?
support more complicated structures and perfor_rn f'aster than unsyr's
chronized ones. Since the natural flow of processing :lrll t}'lese sy?’tems is
from the bottom up, synchronization may prevent “grid %ock by al-
lowing lower nodes to finish processing and pass on their res;jits ;0
higher nodes on the same cycle. To analyze I’.IOW the number of prob-
lems impacts an organization’s structure, a single probiefn cond;t:}c;n is
studied, in which the organization must solvc.z only a single pro emé
versus a multiple problem condition where a series of ten problems mu;
be solved. Each individual problem is composed of five elements each,

Evoiving INForRMATION Processing Onrcanizations 317

Since problems must traverse each level in an organization, the aver-
age solution time per problem is expected to decline in the multiple
problem condition as this “transmission overhead” is eliminated after
the first problem is solved.11

The analysis relies on simple techniques designed to reveal underly-
ing trends. I concentrate on the following structural characteristics:
the size of the organization as given by its number of nodes, the num-
ber of terminal nodes and total attachments to the data queue, and
measures surrounding the level (where the level is given by the shortest
distance between a given node and the root) of various activities, in-
cluding queue attachments, maximum level of any node, and the
maximum number of nodes at any level (here, called breadth). An or-
ganization’s mean path length is also observed— that is, the average
level of its nodes.

The Generic Behavior of Organizations

A thousand organizations were randomly generated according to the
procedure outlined in the section above. The average characteristics of
these structures are given in table 1. These characteristics have very lit-
tle meaning other than to indicate the generic structure that emerges
from the random generation process. They also serve as a benchmark
for the analysis of the evolving system.12
Table 2 shows the average processing time as a function of firing pro-

cedure and number of problems. Random firing has a big impact on pro-
cessing speed, requiring about 47 percent more time in the single prob-
lemn and 22 percent more time in the multiple problems condition (all of
the differences between means are significantly different from 0 at the
0.01 fevel). Also note that although (not surprisingly) the multiple prob-
lems require more time, the time per problem is only 67 percent and 55
percent of that required in the single problem in the ordered- and ran-
dom-firing conditions respectively. As previously discussed, when a sin-
gle problem is solved by an organization, its components must be
moved through all levels of the organization, one cycle at a time. When

multiple problemns are solved, additional problems do not have to “wait”

until the first problem has cleared all levels before beginning, and con-

sequently average processing time is reduced. Table 3 provides an indi-

cation of the economies for solving larger groups of problems. As the

number of problems increases in the queue, the average time to solution
decreases at a decreasing rate. This reflects the spreading of the fixed cost
for the first problem across the other problems.

Figure 2 shows the relationship between processing speed and num-

ber of nodes for the randomly generated organizations under random
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Characteristic Average {5. D) Max Min
Number of Nodes 25.6 {14.7) 50 1
Number of Terminal Nodes 12.8 (7.5) 31 1
Mean Path Length 1.1 (0.6) 2.8 0.0
Nodes Attached to Queue 1.3 {11.3) 43 i
Highest Level Attached to Queue 0.5 0.6} 3 0
Maximum Levels {O=root) 5.0 2.0 10 0
Maximum Breadth 7.7 {4.1) 18 1
Table 1. Randorm organizations.
1= 1000,
Single Problem 3.71 {0.67) 5.46 {1.01)
Multipte Problems 24.69 {5.28) 30.13 (4.75)
Table 2, Randont organizations.
71 = 1000/cetl. Average {5.D.) processing speed.
Ordered Firing Random Firing

1 Problem 3.71 5.46

10 Problems 2.48 3.67

20 Problems 2.45 2.79

30 Problems 2.43 2.67

Table 3. Average processing speed per problent.
n = 1000/cell. Average processing speed per problem,

(top) and ordered (bottom) firing.!> When solving multiple problems
(right) the following patterns are apparent. Regardless of the firing pro-
cedure, small organizations (here, four or fewer nodes) are very di-
chotomous in their performance—either somewhat fast or very slow.
Ordered firing dramatically reduces the variation in performance of
both types of small organizations. Once the number of nodes increases
beyond eight, there is remarkable consistency in the performance of
generic organizations, with all processing speeds falling within about a
ten cycle range. Note, however, that under ordered firing there does
appear to be a gentle downward trend, while under random firing, the
trend has a gentle U-shape that reaches a minimum at around eight
nodes. Thus, there are indications that ordered firing allows larger o1-
ganizations to be more effective, while under random firing, an inter-
mediate number of nodes may be advantageous. Random organiza-
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Figure 2. 1,000 randomiy generated organizations.

tions solving a single problem (left) exhibit similar patterns. Ordered
firing reduces the performance variation across organizations, and ac-
tually forces performance into either three, four, or five cycles regard-
less of the number of nodes. Random firing results in a gentle upward
trend in processing speed as a function of the number of nodes.

The search for generic properties of randomly constructed organiza-
tions reveals a variety of new findings. Perhaps most fundamentally,
the performance of even randomly generated organizations is subject
to strong constraints. This “order for free” has many implications. For
example, small organizations appear to have very discontinuous per-
formance characteristics, and thus are much more “brittle” than large
organizations. In small organizations, the connections among infor-
mation processors are critical as bottlenecks can easily form. However,
as the number of processors grows, the impact of local bottlenecks is
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minimized by the denser web of alternative routes. Thus, large organi-
zations experience relatively homogeneous performance regardless of
structure. Such “size” results are very consistent with the available em-
pirical evidence (see Blau and Schoenherr {1971}, or for a more general
review, see Kimberly [1976]). Also note that the ability to coordinate
processing improves the underlylng performance of organizations.
Moreover, size advantages are quickly exhausted under uncoordinated
firing—intuitively, larger organizations need to transmit the informa-
tion through more processors, and without coordination the addition-
al time required to do so exceeds the time saved by having the addi-
tional processors. A central issue in organizational theory is the
emergence of large-scale organizational forms. While such organiza-
tions could be the result of a slow, finely-tuned, conscious process, the
findings suggest that even large, spontaneously generated organiza-
tions are likely to exhibit good relative performance.

Despite the order observed in the performance of random organi-
zations, there remains enough variance in performance to suggest a
useful role for search directed to finding better organizational forms.
Moreover, it is not clear whether random generation forecloses struc-
tural opportunities that might dramatically improve performance
(for example, even though almost all random configurations of gears
and springs result in roughly the same (very low) quality timepiece, a
few such configurations become chronographs). To explore these is-
sues more directly, we turn next to the analysis of the behavior of

adaptive organizations.

Behavior of Evelved Organizations

The analysis of evolving organizational structures allows us to consider
a number of questions. At the most basic level 1 am interested in
whether simple adaptive processes can lead to better organizational
structure. We know from above that innate processing relations may
constrain an organization's performance—the issue here is whether
these constraints hinder or help adaptation. Clearly the existence of
powerful organizing principles may allow the quick development of
large structures. However, these same principles may thwart local
adaptive search for improved structures. We can also explore the rela-
tionship between environmental characteristics and adaptation. Do
certain environmental conditions, say, coordinated processing or mui-
tiple problems, favor adaptive learning? In this analysis fifty trials of
the fifty-generation genetic algorithm described above are run, and the
best performing organization during the final generation of each trail
is used as the unit of analysis.
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' Ordered Firing Random Firing
_SinBte Problem 2.24 (0.43) 2.92 (0.27)
Multiple Problems 13.90 (0.84) 21.56 (0.77)

Tabie 4. Best evolved organizations.
(11 = 50/cell}, Average (5.D.) processing speed.

”I:abIe 4 lists the average processing speed of the best evolved organi-
zation for fifty separate runs of the genetic algorithm. Notice that the
elvolutionary process was able to evolve better performing Organiza-
t1gns than random generation, with speeds ranging from 53 percent
{single-problem, ordered-firing) to 72 percent (multiple-problems, ran-
dom-firing) of the average randomly-generated organization, (AiJi dif-
ferences among the means in table 4, as well as differences with the cor-
responding entries in table 2, are significantly different from 0 at the
0.01 level.) The standard deviations indicate that the most variation in
performance occurs in the single problem regime, with single-problem
ordered-firing having the greatest coefficient of variation. ’

The results from the genetic algorithms can also be compared to
thost:«e obtained during the 1,000 trials discussed previously. These trials
pr.owde a rough benchmark for an algorithm based on random search
with preservation of the best. Since each comnpleted fifty generation
run of the genetic algorithm is searching at most 1,275 (50 + 25 x 49)
new structures, a comparable number of structures is being investigat-
ed .under each method. In all cases, the average evolved organization is
quicker than the best observed generic organization, although with
the exception of single-problem, ordered-firing (25 percent quicker)
the performance is only marginally better (around 2 percent quicker)
_for the other three conditions. Nonetheless, given that we are compar-
ing the average genetic algorithm performance to the single best ob-
ser.ved random organization, it appears that the genetic aigorithm is
doing more than simple random search.

‘ The above data indicate that organizations can evolve to be better
information processors, Next is an analysis of whether organizations
are evolving to a common structure, and, if so, how does that structure
dep'end on environmental conditions. Tables 5-8 provide the summary
statistics for organizational structure across single and multiple prob-
lems and random and ordered firing. b
One of the best indicators of organizational differences is in the
number of processing nodes in the evolved organization.! In the sin-
gle problem with random firing, evolved organizations use very few
nodes on average (3.0), while with ordered firing, the number of nodes
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. Characteristic Average (5. D) Max Min
Number of Nodes 339 (14.2y 50 7
MNumber of Terminal Nodes 14.4 (8.4) 26 1
Mean Path Length 1.1 ©.9) 3.7 0.0
Nodes Attached to Queue 27.1 (11.9y 48 4
Highest Level Attached to Queue 0.7 (0.6) 3 ¢
Maximum Levels {0 = root) 8.0 (2.5) 16 4
Maximum Breadth 8.2 (4.5) 18 1

Table 5. Best evolved orgaitizations.
1 = 50, Ordered firing, single problem.

Characteristic Average {5.D.) Max Min
Number of Nodes 3.0 1.1) 6 2
Number of Terminal Nodes 1.3 04) 2 1
Mean Path Length 0.2 {0.3) 1.0 0.0
Nodes Attached to Queue 2.8 {(1L.) 6 2
Highest Level Attached to Queue 0.1 0.3y 1 0
Maximum Levels {0 = root) 1.7 07 3 1
Maximum Breadth 1.3 {0.5) 2 1

Table 6. Best evolved organizations.
# = 50, Random firing, single problem.

goes up dramatically (33.9). In the latter situation, there is a lot of vari-
ation in final size (with a range of 43 nodes). With a single problem,
only a limited number of nodes can possibly be used to capture and
process data. Under ordered firing, adding extra nodes to the organiza-
tion without disturbing the core processing structure will not increase
processing time since the coordination allows the core structure to
function as if the additional nodes were not present. Under muitipie
problems, the average number of nodes (48.3) approaches the maxi-
mum of ffty with ordered firing, and only 12.1 under random firing.
The low number of nodes used in the random-firing structures, sug-
gests that the advantages of size may be rapidly diminished. Also note
that the variance in structure size under ordered firing drops dramati-
cally as compared to that in the single probiem—as long as there is co-
ordination, multiple problems are best solved with more processors,
Figure 3 displays the performance of the evolved organizations in the
four conditions versus number of nodes.!3

While additional nodes are useful because they potentially add pro-
cessing power to the organization, they may come at a high cost as they
increase the number of levels through which information must flow.
Random firing of the nodes seriously disrupts the ability of an organiza-
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Characteristic Average 5. D)y ™Max Min
Number of Nodes 48.3 {1.9} 50 43
Number of Terminal 22.2 (2.3) 29 18
Nodes

Mean Path Length 1.62 0.7) 3.2 0.4
Nodes Attached to Queue 38.5 (2.6) 46 34
Highest Level 0.7 0.7) 2 0
Attached to Queue

Maxbmum Levels (0 = toot) 8.3 (1.6) 13 5
Maximum Breadth 10.5 (2.3) 16 6

Table 7. Best evolved organizations.
1 = 50. Ordered firing, multiple problems,

Characteristic Average (8.D.) Max Min
Number of Nodes 121 2.4) 1S 9
Number of Terminal Nodes 5.7 {13} 9 4
Mean Path Length 1.1 ©4) 21 02
Nodes Attached to Queue 10.0 2.4 16 6
Highest Level 0.6 (0.7} 2 0

Attached to Queue
Maximum Levels {0 = root) 4.1 08 6 3
Maximum Breadth 4.3 (6.9) 7 3

Table 8. Best evolved organizations.
n = 50, Random firing, multiple problems,

tion to rapidly move information from lower to upper nodes. For exam-
ple, consider an organization composed of n nodes lined up in single file
(that is, each parent has exactly one child) that must solve a single prob-
lem composed of only one element. Thus, this organization must simply
pass the element from the bottom node to the root. If the nodes are fired
sequentially starting at the bottom, then regardless of the size of the or-
ganization, the information will arrive at the root at the end of the first
cycle since each node is always able to retrieve the element and finish
processing before its parent is fired during the cycle. However, suppose
that the nodes are always fired from the root downward. Here, it will
take 2 cycles since parents always fire before children, and therefore only
the lowest-level node will be able to finish during the first cycle, the
penultimate node during the second cycle, etc. Thus, as coordination
breaks down, the time to transmit information through the levels of the
organization also increases. The analysis indicates that good organiza-
tions must recognize that the benefits in processing power implied by
additional nodes are mitigated by increasing transmission cost.
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Figure 3. Fifty best-evolved organizations.
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was designed to solve difficult, nonlinear problems, and thus the struc-

tures that emerge from the algorithm should contain valuable hints
about optimal forms,

Discussion and Conclusions

Through the use of simple computational techniques I have been able
to analyze some issues surrounding the development and performance
of information processing organizations. At the most fundamental lev-
el, such organizations exhibit “order for free,” that is, once a simple
standard operating procedure and open framework for organizational
structure are imposed, even randomly generated structures imply
well-defined patterns of behavior.

These generic patterns suggest the following: (1) small organizations
are subject to great variation in performance, while large ones tend to
quickly converge to similar performance levels; (2) coordination of pro-
cessing activity can significantly increase performance; (3) initially,
larger organizations tend to improve performance, but only with coor-
dination do the advantages of size persist (thus even when processing
units are free goods, one may still want to limit their use if sufficient co-
ordination mechanisms are not available); (4) even under conditions
when more processing units are useful, they exhibit rapidly diminish-
ing returns; and (5) there are econormies to solving multiple problems,
although at the cost of requiring additional processing units,

Beyond the immediate applications of the above results, the notion
that order exists among random organizations has some sirnple,
far-reaching implications. Foremost, it implies that the emergence of
large organizational structures does not require great forethought. De-
pending on the ability to coordinate activities, large collections of
even randomly organized processing units could achieve high levels of
performance (especially, relative to smaller collections of nodes).16
While the role of conscious (or unconscious) efforts at refining the
structure and improving the performance of organizations is not de-
nied, the above finding may alter the assumptions under which we be-
gin to model such behavior.

To explore the issue of adaptive Organizations, a genetic algorithm
was employed to evolve better performing structures. The algorithm
models a system in which poorly performing organizations are re.
placed by new ones that are derived from the more successful existing
organizations. The results indicate that under such an adaptive
process: (1) superior organizational forms are quickly developed; (2)
with high coordination of processing units, a variety of forms will



326 MitLer

solve single problems, but multiple problems tend to employ the max-

imum number of nodes possible; and (3) with low coordination of pro-

cessing units, an intermediate number of nodes is used, with multiple

problems requiring more noges than single problems.

The goal of this research has been to better understand the generic

properties of organizational structure and to provide insight into the

dynamic process of organizations trying to adaptively improve their
performance, The ability to understand, or, even ask, such questions is
very dependent on the set of theoretical tools availtable. Here I rely on
recent advances in adaptive computation to develop a simple method-
ology from which we can conduct numerical experiments and explore
key issues. The opportunities for analysis using such techniques are im-
mense. For example, experiments in which processing units either ran-
domly misfire (for example, workers shirk on occasion), are absent from
the organization (for example, workers call in sick), or have specialized
abilities can be conducted.!? Obviously, the basic methodology devel-
oped here also makes numerous other questions concerning the emer-
gence, design, and operation of organizations amenable to analysis.
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Notes

1. In fact, one practical application of this work is in the design of large scale, decen-
tralized computing networks (Schwartz 1980). The ready availability of large, inter-
connected networks of independent processors, as well as the inherent physical lim-
its of serial processing, has provided the impetus for developing distributed

(paraliel) processing systems.

2. See, for example, Holland and Miller (1991) for a discussion of the broader impli-
cations of the computational approach, or Carley (1995) for a discussion more fo-
cused on organizational theory.

3. The methodological approach outlined here should atso work for more complex
varieties of problems, such as those discussed by Reiter {1995}

4, Note that another prerequisite for decomposability is that each processing unit
has the ability o solve any given picce of the problem.

5. One extension would be to have queues with problems of varlable length. Exper-
iments with this condition indicate that this has little effect on the results reported

hiere,
6. To avoid losing information about a given problem, a node must insure that afl of
its children are done working on the problem before passing it onward.
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VAR pare: (i $ the parent to becom i

nos C(,mnexz :; gtéit‘:fdconnectlon is ff)rced on the parent). If children cxis(: 2}:{: rmliln .
Hdren are placed in the deleted node’s former position‘ maet

11, Intuitively, like oif in a pipeli
Y pipeline, while it m N
to be transmitted, the second drop follows 1mn?§d:?z]t\:i; 'ong time for the frst drop

12, Since th i i
pepulation g;g t;azt:t:uarﬁoréit‘iflfm uses the same random procedure to create an initial
o , dilierences in evolved stru .
50mME in ; ctural characteristi ill o
dication of the effect of adaptation on organizational structzﬁiﬂcs will ghve

13. Inall i
Attt “t')ifsti;eaf;gutroes:: fg;zfi::}x;szt}; of observations is difficult to depict although an
e plotting to give some indicati i
4 This is n - ndication of this property.
ed with 1 1ot Loo surprising, as most of the other characteristics are higl o
1is variable; Organizations that are lar \ 'ghly correlat

more terminal nodes, grogter Ber on average, also tend to hawv
mean path len ¢
more levels, and greater breadthy, P gth, more nodes attached to the gqueue,

15. Note that in the NW i
panel, the distribution of Gnal izati
or i i
apparent. In fact, 76 percent of the trials had a speed of tw%)a;lr;?tsgz i)lfsfggt readly
UE,

16. Please note that this statement is conditional on node;

souce, s not being a scarce re-

17. In fact, v
o bt g: ri:lz;:seinbcgm:j to exp‘lo're the first two of these conditions, and have
P g,S ir:}o e lc.ondttion results in better performance tha'n the mis
, since eliminating a node by reconnecting its li i
ing its links to the par-

ent stilf allows fairly effici ; : .
cycle. y ient processing, while mishring directly slows down each
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