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Abstract

Combinations of drugs can result in effective treatments for certain diseases
like HIV/AIDS. Unfortunately, our ability to discover such combinations is
quite limited, as drugs often interact in highly nonlinear ways and thus it is
difficult to predict a priori which cocktails are likely to be effective. More-
over, the brute-force approach of screening all possible combinations fails
due to the combinatorial explosion of possible cocktails, even when we con-
sider modest numbers of candidate drugs. As an alternative, here we use a
nonlinear search algorithm designed to direct the discovery of novel, effec-
tive drug cocktails. We demonstrate this approach by finding chemother-
apy cocktails that can inhibit A549 (lung carcinoma) cells using a hybrid,
nonlinear-optimization algorithm. We find that directed discovery can be an
effective means of automatically deriving novel cocktails using a relatively
small number of experiments. The basic idea of directed discovery explored
here has a variety of other applications across many fields.



1 Introduction

Certain combinations of drugs result in effective treatments for some diseases
like HIV/AIDS. Unfortunately, discovering such drug “cocktails” is often
quite difficult. A priori, it is difficult to predict the effectiveness of any given
cocktail as drugs often interact with one another in highly nonlinear ways.
Occasionally, we may have a good understanding of the various molecular
pathways that need to be targeted, but such knowledge is typically lacking.
An obvious alternative to the above is to search over the set of all possi-
ble cocktails. However, the combinatorics implied by such a search quickly
become unwieldy, as even modest-sized cocktails result in enormous search
spaces.1 As an alternative, here we employ a non-linear search algorithm to
direct the discovery of effective drug cocktails.

To demonstrate this approach, we use a hybrid, nonlinear-optimization
algorithm to search for drug cocktails that can effectively kill off A549 cells
(a line derived from a lung carcinoma). We search over a space of nineteen
possible drugs, and thus there are over half a million possible cocktails. Our
pilot results indicate that directed search can indeed locate effective cocktails
even with a relatively small sampling of the possible combinations. We find a
cocktail that performed 4.18 standard deviations above the mean of a random
sample2 after observing only 370 cocktails.

The general idea of directed discovery has wide applicability. In terms of
medical applications, along with developing cancer chemotherapies discussed
below, other applications include the development of anti-viral, diagnostic,
and other treatment regimes. Such directed search could also be used in other
fields, for example, to derive chemical or biological cocktails and processes for
industrial applications, such as chemical engineering and environmental clean
up, or to conduct other types of experiments needed in business applications
such as product development, production, and marketing.

1.1 A Framework for Directed Discovery

The basic framework we consider is one in which we are attempting to exper-
imentally discover good solutions to a problem. We assume that the space of

1For example, combinations over a set of twenty potential drugs result in over a million
possible cocktails.

2Which, if the underlying distribution is normal, would imply the upper 0.0014% of
the distribution. The assumption of normality is discussed later in the paper.
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possible solutions, S, is large enough that enumerative search is impossible.
Each possible solution, s ∈ S, generates a “fitness,” with higher values of
fitness implying better solutions. If the constituent elements of a solution
interact linearly, searching for good solutions is of O(N), where N is the
number of elements (and thus enumerative search becomes feasible). How-
ever, if the elements of the solution interact nonlinearly, in the worse case
scenario search is of O(2N) (with binary elements). We suspect that typi-
cally the world exists between these two extremes, and that while there are
nonlinearities, there are also sufficient regularities in the space that a search
algorithm designed to seek out high-fitness solutions with a minimal number
of experiments can be used to direct the discovery of good solutions.

Below we consider simple drug cocktails as potential solutions to the
problem of killing cancerous cells. We use nineteen different drugs, each
with a pre-determined, fixed dose, and thus there are 219 or 524,288 possible
combinations. Of course, more elaborate search spaces could be considered,
for example, drugs could have variable dosing, application order, delivery
regimes, and so on.

Each combination of drugs results in a measure of fitness, F (s). Below we
use an intentionally simple measure of fitness that combines the effectiveness
of the drug cocktail in eliminating cancerous cells with a cost for each drug
used in the cocktail. This latter cost is designed to encourage smaller mixes
of drugs ceteris paribus. The fitness measure results in an objective function
for the optimization algorithm. Therefore, the fitness function needs to be
carefully chosen to achieve the desired outcome. Much more elaborate fitness
functions than the one used below are possible. For example, fitness could
be tied to the ability of the cocktail to also preserve normal cells, prevent
other side effects, result in low-cost combinations of drugs, exploit nonlinear
effects over single-agent doses, and so on.

The final element of the framework is a search algorithm designed to seek
out high-fitness combinations with a minimal number of experimental trials.
Here we use a hybrid, nonlinear search algorithm. Obviously, there is a large
class of such algorithms, and our particular choice, while informed by some
simulation experiments, represents just one of many possibilities. We did find
that our algorithm was limited in its effectiveness due to a number of exper-
imental confounds identified during the initial series of experiments—even
so, the algorithm was able to find some very effective cocktails. Moreover,
we were then able to identify even more effective cocktails using a modified
search strategy and an improved set of laboratory protocols.
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2 A Demonstration of Directed Discovery for

Chemotherapy Cocktails

To demonstrate the underlying idea of directed discovery, we consider an
application to the development of chemotherapy cocktails for the A549 lung
carcinoma cell line (see the Appendix for a fuller description of the methods
and materials). The cells were first isolated and concentrated so that the
50µl of cell suspension added to each well of a 96-well plate3 resulted in
an expected 1500 cells per well. We had access to nineteen different drugs,
seventeen of which were targeted agents and two of which are used in standard
chemotherapy (see Table 1). Based on the results of prior experiments, we
identified drug dilutions so that 10µl of the single-agent just provoked a
detectable inhibition response in a well (the mean inhibition was 8% across
the nineteen drugs). Each drug cocktail consisted of the 10µl increments
from each associated drug along with the addition of DMSO and media, so
that a total volume of 200µl of drug/DMSO/media was added to each well.
We adjusted the final DMSO concentration of each well to a constant value
(set equal to the DMSO concentration of total volume that would result if
all nineteen drugs were in a single cocktail, here 0.66%).

Each drug cocktail was replicated in three horizontally contiguous wells
of the plate. Three wells in the center of the plate and three on the outside
edge received a cocktail with no drugs (but with DMSO and media additions
as described above). The plate was then placed in an incubator and 44 hours
later 25µl or 10% of the total well volume of Cell Proliferation Reagent WST-
1 (Roche Diagnostics, Indianapolis, IN) was added and the plate was then
incubated for another four hours. The WST-1 assay provides a measure of
cell survival (via differential absorbance of the reagent). The optical density
of the plate was then read on a scanning, multi-well spectrophotometer at
440nm with a 600nm reference, and it was averaged over the three wells used
for each cocktail. This mean value was normalized by dividing it by the mean
optical density for the six control wells. Our measure of cell survival, K(s),
was given by this normalized value.

The algorithm we use here begins with a population of thirty randomly
created cocktails. This initial population is known as Generation 0. Each of
the nineteen drugs had a 0.33 independent probability of being included in
each cocktail. The various cocktails were tested as described above and were

3Each well had a capacity of 400µl with a tissue culture area of 0.33cm2.
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% DMSO at given
Drug Concentration µM drug concentration
4HPR 5 0.05000
5-aza-2’ deoxycytidine (decitabine) 2 0.02000
anisomycin 0.015 0.00003
ATRA (Vesanoid) 15 0.15000
bortezomib (Velcade) 0.005 0.00000
CD437 0.3 0.00300
cisplatin (Platinol-AQ) 5 0.00000
deguelin 12 0.12000
gemcitabine HC1 (Gemzar) 0.004 0.00000
imatinib mesylate (Gleevec) 3 0.00000
indirubin-3’-oxime 1 0.00200
LY294002 HC1 2 0.02000
MX3350-1 0.5 0.00500
PD 168393 5 0.10000
rapamycin 6 0.10971
SAHA 2 0.02000
SCH66336 (Sarasar) 5 0.05000
SP 600125 5 0.01000
ST1926 0.05 0.00050

Table 1: Drugs used in the experiment. Gemcitabine HC1 and cisplatin
are considered to be chemo-therapeutics, the remaining drugs are targeted-
therapeutics.
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assigned a fitness value equal to

−K(s) − 0.1 × |s|,

where K(s) is the measure of cell survival from above and |s| is the number
of drugs used in the associated cocktail. Note that the minus sign in front
of K(s) implies that cocktails that have lower survival rates (that is, kill
more cells) are fitter ceteris paribus. The second term of the fitness function
imposes a penalty on cocktails that use more drugs, thus, the addition of a
new drug in a cocktail needs to result in at least 10% less survival before
fitness will increase.

The algorithm then proceeds through a series of iterations or generations.
During each generation, a new population of cocktails is formed by first
reproducing members of the old population biased by performance. A subset
of these reproduced cocktails are then modified via mutation to produce some
novel cocktails, and these are then tested using the lab procedures outlined
above. The algorithm is then iterated on to the next generation.

In each generation we maintain a population of thirty cocktails. We first
select thirty cocktails from the previous generation to serve as the basis for
the new population. We use tournament selection, whereby three members
of the previous population are randomly chosen (with replacement) and a
copy of the one with the highest fitness in this group is added to the new
population (in case of a tie, we randomly pick among the best). Note that
this selection procedure, while biased in favor of higher fitness cocktails,
does not necessarily guarantee that the best member of the population will
be retained or the worst eliminated.

Next, we take fifteen randomly chosen members of the new population,
and mutate them to generate fifteen novel cocktails. Mutation works by tak-
ing an existing cocktail and independently, for each of the nineteen possible
drugs in the mix, having a 7% chance of altering that drug (that is, adding
the drug to the mix if it was not present or eliminating it if it was used). We
continue to mutate a cocktail until it results in a novel cocktail, that is, one
that has not been previously observed during the prior series of experiments.

Thus, at the end of the above procedure we have a population of fifteen
previously observed (and perhaps repeated) cocktails and fifteen novel cock-
tails. These latter cocktails are assigned fitness values using the previously
described laboratory procedure, and the generation is concluded. Therefore,
each new population is a biased (by fitness) selection from the previous pop-
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ulation with some local modifications that insure that half of the population
is novel.

The algorithm above is a hybrid of some well known non-linear optimiza-
tion algorithms. Like a genetic algorithm [1], it maintains a population and
uses a biased selection mechanism and mutation for modification, however, it
does not incorporate any kind of recombination. The algorithm also takes on
some characteristics of hill-climbing and simulated annealing [2]. Like these
latter two algorithms, the mutation operator performs local search based on
a status quo. The key difference, though, is that here the status quo is a pop-
ulation of points (versus a singleton). As the algorithm iterates over time, it
is likely that the set of status quo points collapses down to a singleton via
selection, and thus the algorithm’s behavior progresses from something akin
to a genetic algorithm to something more similar to simulated annealing and
hill climbing.

2.1 Results

Figure 1 shows the results of the algorithm for a single experiment (PilotA–
Experiment 0).4 The fitness of the initial thirty randomly-generated cocktails
is given by the red points on the far left (Generation 0). In Generation 1, the
black points are the fitness values for the fifteen selected, but unmodified,
cocktails. The red points in this generation, indicate the fitness values of the
fifteen novel experiments. Given the selection mechanism, we would expect
that the distributions of the black points over any given generation will tend
to move upward and tighten over time. (Note that in Generation 5, the best
cocktail observed to date was lost due to selection.) Of more interest is the
pattern of the red points, as these represent the exploration of novel cocktails.
We find that with some exceptions (Generations 6 and 9 are notable), the
distribution of newly explored cocktails tends to show increasing fitness.

Table 2 provides some descriptive statistics of the populations during
the search. In Generation 0 we randomly created thirty cocktails. In each
subsequent generation, fifteen novel cocktails were created via mutation. The
statistics in the table are only over the novel cocktails during each generation.
The data indicate that the search had mixed success. Clearly in many of the
generations the novel populations appeared to be showing clear improvements

4Two such experiments were performed. The results of PilotA–Experiment 1 were
similar.
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Figure 1: Results of direct search by generation. Red points (RHS) repre-
sent newly conducted experiments while black ones (LHS) indicate retained
experiments from earlier generations.
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Best (New) In Best
Generation Average Std. Dev. Generation To Date

0 -1.11 0.14 -0.90 -0.90
1 -1.05 0.12 -0.81 -0.81
2 -1.08 0.13 -0.87 -0.81
3 -0.94 0.10 -0.74 -0.74
4 -0.99 0.06 -0.87 -0.74
5 -0.99 0.09 -0.79 -0.74
6 -1.13 0.09 -0.98 -0.74
7 -0.94 0.06 -0.81 -0.74
8 -1.00 0.17 -0.72 -0.72
9 -1.05 0.11 -0.87 -0.72

Table 2: Descriptive statistics for novel cocktails during PilotA–Experiment
0 search. The data for Generation 0 are based on thirty, randomly generated
cocktails, while those for subsequent generations include only the fifteen novel
cocktails created in that generation via mutation. In total, 165 (30 + 15× 9)
novel cocktails were explored during this experiment out of 524,288 possibil-
ities.

over the initial population; yet, even a casual view of the data does not
indicate a clear trend towards higher performing cocktails.

An analysis of the data at the end of Experiment 0 indicated some im-
portant (and ultimately confounding) sources of noise in the optical density
measure. First, wells with only DMSO and media (but no cells), had a mean
optical density of 0.45 with a standard deviation of 0.02 or about 4% of the
mean. A similar analysis of (interior) wells containing DMSO, media, and
cells, gave a mean optical density of 2.26 with a standard deviation of 0.15
(7% of the mean), and thus the biological activity in these latter wells appears
to increase the variance. Another important source of variation is differences
caused by the location of the well, in particular, whether or not the well is
in the interior of the plate. If we separate out the interior and exterior wells
from the previous experiment, we find that the mean optical density is 2.26
(sd = 0.15, n = 60) for interior wells and 1.31 (sd = 0.23, n = 36) for exterior
wells, and thus exterior wells have an expected assay value of about 58% of
the interior wells. The plates used in our experiment had a similar drop off
in the six control wells, with the exterior wells having an assay value of about

8



Number of Edge Wells
0 1 3

Mean Fitness -1.10 -1.05 -0.96
Std. Dev. 0.13 0.11 0.12

n 121 132 77

Table 3: Number of edge wells versus mean fitness of the cocktails during
PilotA–Experiment 0.

67% of the interior ones (2.75 versus 1.84 with n = 33 in both cases). Further
evidence of an edge effect is apparent in a comparison of the mean fitness of
the wells with cocktails. As seen in Table 3, the fitness values increase as the
number of edges increase which, given that higher fitness is associated with
lower optical density, is consistent with the previous observations.

Note that the algorithm we used is sensitive to excessive noise. To econ-
omize on the number of experiments, we only assigned fitness to a cocktail
once, and did not retest it during the search. Thus, it is possible for an
inferior cocktail to be given a high fitness evaluation due to serendipity (say,
all of its wells were on the edge and the raw noise from the assay worked in
its favor). Similarly, even good cocktails could receive low fitness evaluations
if they were unlucky. Given our selection mechanism and the inherent varia-
tion in the experiments, it is likely that even low fitness cocktails could have
survived for long periods and confounded the search.

To further explore some of the above issues we performed a hill-climbing
search using the best cocktail identified by Generation 7 (this cocktail arose in
Generation 3). For hill climbing, we searched all of the “one-mutant” neigh-
bors of the cocktail of interest (the “status quo”). One-mutant neighbors of
a given cocktail are all those cocktails that differ by either the addition of
a single drug that was not in the status quo cocktail or the elimination of a
drug that was included. Thus, we explored twenty cocktails (the status quo
and its nineteen possible, one-mutant neighbors)—all of these cocktails were
placed in the interior of the plates to avoid edge effects. Based on the results
of the initial hill climb, we selected a new status quo point (that was given by
the cocktail common to the two best mutants observed), and again explored
all of the one-mutant neighbors. This latter status quo point proved to be
the (perhaps local) optimum. Figure 2 provides a comparison of the original
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cocktails (Generation 0r5) and the populations from the first (designated One
Mut 1) and second (One Mut 2) hill climbs. The mean fitness of the second
one-mutant population was -0.64 (sd = 0.07) while that of the Generation
0r population was -1.18 (sd = 0.15), and the hypothesis that the means of
the two distributions were the same is easily rejected (t = 17.1). The fitness
of the best one-mutant cocktail was -0.54, which is around 4.18 standard
deviations away from the mean of the Generation 0r distribution (using the
higher variance from that distribution). If the underlying distribution is nor-
mal, such an outcome would be in the upper 0.0014% of the distribution,
and therefore we would expect that given our 370 observations (from the two
experiments and two hill climbs), such an outcome would arise about 0.53%
of the time by random search. Note that this interpretation of the data is
predicated on the assumption of normality, and so caution is urged. As dis-
cussed below, we do find that our best cocktails are hitting a lower bound on
K(s), and this might cause the tails of the underlying distribution to fatten,
implying that it may not be normally distributed. Nonetheless, the search
did appear to turn up a very fit cocktail given our objective function.

The results of the one-mutant experiment also illustrate a second issue
that may have confounded effective search, namely reaching limits in the
assay’s ability to differentiate among effective drug combinations. The assay’s
lower bound appears to have a normalized optical density of around 0.20.
Many of the drug cocktails we explored reached this lower bound, that is,
they apparently killed off the maximum number of cells we could detect. If
such a lower bound is easy to achieve, then there is not much information that
can be exploited by the search algorithm, since a large number of perhaps
unrelated combinations may lead to high fitness. At some level, this is not a
problem, as we are achieving our objective. Moreover, recall that our fitness
function incorporates both cell kill and the number of drugs used in the
cocktail. Thus, once cocktails hit the lower bound of cells killed, the only
way to increase fitness is to seek out cocktails that achieve this outcome with
fewer drugs. Such behavior was observed during our hill-climbing search.

The best cocktail we found used three drugs: 4HPR, SAHA, and Vel-
cade. This combination had a K(s) of around 0.18 to 0.22 depending on

5The “r” designation is for a replication we did of the original Generation 0 cocktails to
explore the repeatability of the experiments with the same cells across 46 days. The mean
fitness of the initial data was -1.11 while that of the replication was -1.18. The two sets of
data had a correlation coefficient of 0.68 and further analysis indicated that the fitness of
the replicated cocktails tended to be slightly worse than that of the original generation.
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Figure 2: Comparison of Generation 0r (random cocktails) to the one-mutant
neighbor populations arising from a hill-climbing search. The first such pop-
ulation (One Mut 1) used as its status quo the best observed cocktail arising
in PilotA–Experiment 0 up to Generation 7 (this particular cocktail was first
discovered in Generation 3 of that experiment). The second population (One
Mut 2) had its status quo given by the cocktail that was formed by the com-
mon drugs in the two best cocktails observed in One Mut 1. This latter
status quo appears to be the (perhaps local) optimum.
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K(s) as
Drug Single Agent
4HPR 0.92
SAHA 0.87
Velcade 0.68

Table 4: Normalized cell survival K(s) given single agent at full dose (1×).

the experiment. During the course of our 370 experiments, we investigated
twenty two other triplets (out of 969 possible), and observed K(s) values
in the range of 0.43–0.99. These latter triplets were not a random sample
(they should be biased toward lower values of K(s)), so this provides some
support for the notion that the cocktail we found is not a common feature of
triplets. Moreover, if we order all of the experimental outcomes from lowest
to highest values of K(s), we find that all of the top fifty five cocktails used
the three drugs found in our best cocktail (of the top seventy five cocktails,
all but four incorporate these drugs). Table 4 lists the single agent effect of
the three drugs in question. Both 4HPR and SAHA have relatively small
single-agent impacts, with Velcade showing a bit more kill (but within the
norms we observed). Table 5 shows the impact on K(s) of the cocktail and of
the cocktail minus each individual drug (at both full dose and a 55% dilution
designed to move us away from the lower bound of K(s)). Please note that
the data in both these tables are from a single experiment, so there may be
considerable variance underlying the observations. That being said, if each
drug just contributed its single-agent impact, we would expect K(s) to equal
0.48 rather than 0.18. If the world were linear, we would also predict that
4HPR and SAHA would have less impact than they do, while Velcade should
have more. That is, 4HPR and SAHA seem to work better in combination
than you might expect a priori. Indeed, this effect is quite dramatic under
the 55% dilution regime, where the elimination of either of these two drugs
tends to cause a large loss in effectiveness of the remaining drugs. A fuller
exploration of the nonlinearities involved in this cocktail, and the underlying
mechanisms that account for its behavior, is of interest.

12



Drug K(s) at 1× K(s) at 0.55×
All 3 0.18 0.35
no 4HPR 0.37 0.92
no SAHA 0.45 0.82
no Velcade 0.37 0.58

Table 5: Normalized cell survival K(s) at full dose (1×) and 55% dilution
(0.55×) for the cocktail and the cocktail less the specified single agent

3 Conclusions

The directed discovery of novel drug cocktails, and more broadly, the use of
such techniques in a variety of other domains, allows us to break through the
usual knowledge and combinatorial bounds that constrain our ability to find
good experimental solutions to important problems. Heretofore, searches
for, say, novel drug cocktails either required an explicit knowledge of the
underlying molecular pathways in the system or an ability to do massive
numbers of experiments to explore all possible combinations—both of which
are often lacking. As demonstrated above, directed discovery was able to
identify some very effective novel drug cocktails by exploring only 370 out
of the 524,288 possible cocktails. The ability to efficiently conduct such
experimental searches provides a new means by which to make progress on
some difficult problems.

The general idea of directed discovery has wide applicability. As shown
above, it can be used as a basis to develop novel cancer chemotherapies.
Similar techniques could be used to develop anti-viral therapies, diagnos-
tic techniques, and other treatment regimes. Applications are also readily
found in a variety of other fields, ranging from chemical and environmental
engineering to business.
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Appendix: Materials and Methods

Cell Culture: Human lung carcinoma cells, A549, were obtained from
the ATCC (American Type Culture Collection, Manassas, VA). The A549
cells were cultured in a monolayer with a 1:1 (vol/vol) mixture of Gibco
Dulbecco’s modified Eagle’s medium: Nutrient Mixture F-12 from Invitrogen
Corporation (Carlsbad, CA). The media was supplemented with Gibco US
Qualified Fetal Bovine Serum from Invitrogen Corporation (Carlsbad, CA)
and Cellgro Antibiotic-Antimycotic Solution from Mediatech, Inc. (Herndon,
VA) at 10% and 1% (vol/vol), respectively. The cells were cultured at 37◦C
in a humidified atmosphere containing 95% air and 5% CO2.

Drugs : Anisomycin, indirubin-3’-oxime, LY294002 hydrochloride, and SP
600125 were obtained from Tocris Cookson, Inc. (Ellisville, MO). All were
dissolved in dimethyl sulfoxide (DMSO) purchased from Fisher Scientific
(Pittsburgh, PA) at concentrations of 50mM , 50mM , 10mM , and 50mM ,
respectively. Deguelin and rapamycin were both from Axxora, LLC (San
Diego, CA), and dissolved in DMSO to 10mM and 5mg/ml, respectively.
Hai Tran’s Lab prepared cisplatin (Platinol-AQ) from Bristol-Myers Squibb,
Co. (Princeton, NJ) and imatinib mesylate (Gleevec) from Novartis Phar-
maceuticals Corporation (East Hanover, NJ). Cisplatin was dissolved in a
sodium chloride solution to 1mg/ml, and imatinib mesylate was dissolved
to 12mg/ml in sterile water for injection. Both gemcitabine HCl (Gemzar)
from Eli Lilly and Company (Indianapolis, IN) and bortezomib (Velcade)
from Millennium Pharmaceuticals, Inc. (Cambridge, MA) were dissolved in
media to 10mM and 1mg/ml respectively. 5-aza-2’ deoxycytidine was ob-
tained from Sigma-Aldrich, Inc. (St. Louis, MO) and dissolved to 10mM
in sterile water. PD 168393 from Calbiochem (San Diego, CA) was diluted
in DMSO to a concentration of 5mM . The final seven drugs came from Dr.
Reuben Lotan’s lab and were prepared by Dafna Lotan. All were prepared
at a 10mM concentration in DMSO and stored under nitrogen. The seven
drugs were as follows: 4-HPR (N-(4-hydroxyphenyl)retinamide) from the Na-
tional Cancer Institute (Bethesda, MD), ATRA (all trans-retinoic acid) from
F. Hoffmann-La Roche (Basel, Switzerland), CD437 (6-[3-(1-adamantyl)-4-
hydroxyphenyl]-2-naphthalene carboxylic acid) from CIRD/Galderma R&D
(Sophia Antipolis, France), MXC3350-1 from Maxia Pharmaceuticals (La
Jolla, CA), SAHA (suberoylanilide hydroxamic acid) from the Midwest Re-
search Institute, SCH66336 (Sarasar) from Schering-Plough (Kenilworth,
NJ), and ST1926 (E-3-(4’-hydroxy-3’-adamantylbiphenyl-4-yl) acrylic acid)
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from Sigma-Tau (Pomezia, Italy). All drug aliquots were stored in the dark
at -20◦C, except for 5-aza-2’ deoxycytidine, which was stored in the dark at
-80◦C.

Preparation of Plates : A549 cells were isolated from BD Falcon 75cm2

tissue culture treated flasks from BD (Franklin Lakes, NJ) after a Cellgro
Phosphate Buffered Saline from Mediatech, Inc. (Herndon, VA) rinse and
the addition of Gibco Trypsin-EDTA (0.05% Trypsin, with EDTA 4 Na) from
Invitrogen Corporation (Carlsbad, CA). The cells were then plated with 50µl
per well in 96 MicroWell Nunclon∆ plates from Nalge Nunc International
(Rochester, NY) at a cell concentration of 1,500 cells/well. Plates were then
stored at 37◦C in a humidified atmosphere containing 95% air and 5% CO2

until the addition of the drugs.
Drug Preparation: Drug doses were chosen which allowed for a minimal

amount of cell kill. Cell proliferation curves under the presence of a given
drug were generated to determine the appropriate dose to use for each in-
dividual drug. All drugs were further diluted with media from their stock
solutions so that the concentration of each drug was such that the addition
of 10µl of a drug into a final well volume of 250µl resulted in that target
concentration across the final well volume.

Combinations : The drugs for a given combination were mixed in a 96-
well 2ml sterile polypropylene block from Denville Scientific (Metuchen, NJ).
All combinations were mixed at four times the needed volume for one well,
since each was added in triplicate and the additional amount allowed for
pipetting error. Since 19 drugs were used in the experiment, the maximum
percent volume of DMSO was calculated based on the assumption that one
well could contain all 19 drugs as one combination (0.66% by volume DMSO
for the 19 drugs). All combinations in an experiment were normalized to
the maximum allowable DMSO concentration of 0.66% DMSO by volume,
by adding the necessary amount of DMSO to each combination. Since wells
contained varying numbers of drugs and DMSO amounts, media was added
to attain a 250µl final well volume. The cells occupied 50µl, therefore 200µl
of drug/DMSO/media mix was added to the cells in each well. The plates
were returned to 37◦C in a humidified atmosphere containing 95% air and
5% CO2.

Determination of Cell Proliferation: After 44 hours of incubation the
plates were removed from the incubator and WST-1 Cell Proliferation Reagent
from Roche Diagnostics (Indianapolis, IN) was added. The reagent was
added at 10% by volume, therefore, 25µl of WST-1 was added to the 250µl
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well volume. The plates were returned to 37◦C in a humidified atmosphere
containing 95% air and 5% CO2 for four hours. At 48 hours of total incuba-
tion, four hours after the WST-1 addition, the absorbance of the dye solution
was measured on a scanning, multi-well spectrophotometer at 440nm with a
600nm reference.
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