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Abstract
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1. Intreduction

The search for an appropriate way to mode
been a central topic in the study of game theory. While a variety of approaches
have been used, few of them have explicitly incorporated notions of bounded
rationality, learing, and adaptation, Rubinstein (1986) analyzed meta-agents who
optimized their selection of strategics constrained by the costs of implementing

| the strategic choices of agents has
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such strategies. This paper builds on this approach by modeling the meta-agent’s
choice through an explicit evolutionary process—a genetic algorithm (Holland,
1975; Goldberg, 1989). By creating artificial adaptive agents (Holland and Miller,
1991) we are able to use ‘computational experiments’ Lo study the evolution of
strategic choice in games across a general class of adaptive systems. Here, as a
simple example of this approach, we analyze the coevolution of strategies in the
repeated Prisoner's Dilemma (RPD) game with perfect and imperfect reporting.

Consider the following thought experiment. A group of individuals is about to
play a game. In order to participate, players are required to submit a program that
exactly specifies their moves contingent upon the opponent’s reported moves.
Initially, the participants have no knowledge of how to play the game, and thus
randomly choose their programs. After each round of the game, the actual scores
and programs of every player become common knowledge. Based on this informa-
tion, each person is allowed to adjust his or her program for the next round.
Participants submit their new programs, and a new round is initiated. Given such
an environment, what types of programs will emerge?

The basic elements of the above scenario encompass important ideas about
equilibrium behavior that have emerged from the work of Binmore (1987a, b).
Binmore argues that descriptive concepts of equilibrium may be more important
than prescriptive ones. However, current descriptive constructs, for example,
replicator dynamics and evolutionary stable strategies (Maynard Smith, 1982),
often lack the ability to incorporate forms of learning and innovation. The present
study removes this restriction, allowing for both learning and innovative processes
to enter the model in a tractable manner.

This work assumes that a player’s program can be represented by a finite
automaton (specifically, a Moore machine—see section 3.2). The idea of selecting
a new program based on the results of previous programs is operationalized
through the use of a genetic algorithm. Using these elements, the evolving
strategic choices of agents are examined under the conditions of a repeated
Prisoner’s Dilemma game with both perfect and imperfect reporting. The strategies
that emerge are classified and their performances are analyzed.

The following research has both theoretical and empirical components. On the
theoretical level, elements of bounded rationality and adaptive learning behavior
are combined in a peneral methodological framework. The importance of such
models has long been recognized (Simon, 1955, 1959, Day, 1975; and Nelson and
Winter, 1982), but tractable models that can display the complex behavior inherent
in adaptive learning systems have been difficult to derive. The use of artificial
adaptive agents (Holland and Miller, 1991) allows the relatively easy analysis of
such complex learning models, and should serve as the basis for the creation of
benchmarks that will complement the results from both traditional theory and
human experiment. While the major focus of this paper is a game theoretic
application of the model, generalizations that capture other social science phe-
nomenon exist, and are discussed in the last section. Empirically, this paper
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introduces techniques that allow useful computational experiments to be conducted
on a wide variety of games and other complex adaptive economic systems.

2, Background

The potential of automata theory for the analysis of games was first suggested
in the economics literature by Aumann (1981). Rubinstein (1986), a.nd Abreu anfi
Rubinstein (1988), studied a RPD in which both players were requnrc_d 1o s-u?n‘nn
strategies in the form of a Moore machines, and founq using a .dynm‘mc definition
of equilibrium that machines will cycle and coordmz_ue their actions, thereby
sharply reducing the number of potential equilibria predicted by the Folk theorem
(Fudenberg and Maskin, 1986). Moore machines were u:se.ci to model a ftr')rm of
bounded procedural rationality, wherein players, recognizing that strategies are
costly to implement, economize on the size of the machine. Here, we impose
additional constraints on the player's ability to derive the best procedural rules.‘

In this paper, the meta-agent's adaptive choice of a strategy automaton is
modeled through the use of a genetic algorithm. Fogel gt al. (1966), and Axelrod
(F987) have presented related applications of the genetic algorithm. Fog(?l et al.
evolved finile automata that attempted 1o predict a periodic sequence. Besides the
obviously different task, their adaptive plan lacked many of the important fealurc?s
required by a genetic algorithm {for example, crossgver). Axelrod used a %eneuc
algorithm to evolve RPD strategies that based their moves on the game’s past
three-move history. There are a number of major differences between his work a_nd
this study. First, the environment used here is allowed tq coevolve, and varle’s
continuously as the strategic population changes. Tl‘ne major focus of Axelrc'ad s
study was on strategies evolving apainst a fixed enwrtl)nmem, one bflsed on eight
representative strategies from his earlier tournaments. Seconc}. a wide Yariely of
experiments are conducted in this analysis, most notably, the impact of lmperﬁ?cl
reporting. Finally, the use of automata to re_:presenl strategies has two m?j?r
advantages over Axelrod’s fixed history strategies: (1) automata are & very ﬂEXI%) e
description of strategic choice, and thus incorporate many theoretically important
strategies that cannot be easily defined under the restriction of the past three-move

history (For example, strategies which rely on counting or triggers, etc.), and (2)
their analytical possibilities are much richer.

' “Fhe variable cavironment case explored here wiis mentioned in Axclrod’s paper, bul very i;ulc
attention was given 10 8. The last pant of Scetion 5 develops some links between the two approaches.

¢
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3. The repeated prisoner’s dilemma, finite autemata, and evolution

3.1. Repeated prisoner's dilemmas

"E’he game used in this analysis is the repeated Prisoner’s Dilemmma (RPD). The
Pr:sgnen:'s Dilemma game was first formalized by Tucker (1950), and its Cu'rrcnl
apphcahons span most of social science (see Axelrod and Dion léSS forka partial
revu':w). Important economic applications include: collusion bc’lween’ firms, trade
barriers between countries, and public goods problems. The Prisoner's Dii'emma
(\;as chosen fof this analysis because of its wide applicability, and the potential for
p;:ci; u:;orr;l:)if;l;ﬁons of the methodology presented here with the plethora of

The basu:_ Prisoner’s Dilemma is a two-player game, with each player having a
cho:cc'e of either cooperating (C) or defecting (D). The payoffs used in lhf:;se
experiments are the ones typicaily found in the literature and are presented in Fi‘g
1. (.3!‘\’651 Ehes‘e payoffs, it is easily shown that mutual defection is the only Nash'
equnlxb.r:um (it is also a dominant strategy equilibrium). OF course, the intrigue ‘of
the Prisoner’s Dilemma is that this unique equilibrium is Pztreto‘ inferior {o the
mutuz‘x! cooperation outcome. If the basic Prisoner’s Dilemma is ilerated, the
resulting supergame is a RPD. If the number of iterations is a known t,"mite
n.umb.er, then a simple backward induction argument implies that the only equilib-
num is mutual defection in every round, However, if the game is repeated a finite
bpt unkqown number of times, or if it is played an infinite number of times with
dlscount!flg or payoff averaging, then cooperative outcomes can theoretically
eme(ngzfldfact. lhe' folk theorem implies that with sufficiently Hutle discounting,

zgiﬂ:i?) ;::;n .ualfy rational outcome can be supported as a {subgame-perfect) Nash

The actual behavior of human subjects in the RPD has been widely analyzed
(see the references cited in Shubik, 1982, pp. 400-401). Axelrod ( 19;54) Zon-

ducted two.loumamems that used computerized strategies submitted by subjects
from a variety of backgrounds. His analysis indicated that the most c;ffec:iv;s
strategy in the tournaments, Tit-For-Tat (TFT), was also the least c;)mplicq!cd
TFT begins by cooperating and then mirmrors the opponent’s last movc."ﬂae'

primacy of TFT was somewhat surprising given the level of sophistication of other
strategies entered in the tournament,

C; D,
Cy 3,3 0,5
Dy 50 1,1
{The payofls are ordered Player 1, Player 2.)

Fig. 1. The basic prisoner's difemma.
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While a large amount of analysis exists for the RPD under conditions of perfect
information, very little exists for the game under imperfect information. Here we
consider imperfect reporting of the opponent’s actual moves. That is, a noise level
of a% indicates that % of the time an opponent’s move is reported to be the
opposite of what the opponent actually did, while the remainder of the time the
move is perfectly transmitted. For this notion of reporting noise to make sense in
the context of a repeated game, we require a delay or aggregation of subgame
payoffs (otherwise, the payoff information would be sufficient 10 reveal the actual
move). Examples of situations with delayed payoffs and imperfect verification
include arms treaties and oligopolistic production agreements. The presence of
noise in the system implies that strategies should not only react to the misrepont-
ing, but also try to exploil it. Thus, programs thal discount reported defections due
1o the noise, may fall victim to strategies that intentionally defect hoping for either
a forpiving opponeat or a reporling error.

The RPD is a natural choice for inclusion in these experiments. Techniques that
allow carefully controlled experimentation with the model under a variety of
situations will not only increase our current knowledge about the game’s charac-
teristics, but also expand the possible set of applications. The RPD is a member of
a much broader class of games, and therefore procedures used with this game may
be eusily transferred into related domains. A key to maintaining this generality is
finding a convenient, yet flexible, representation for strategies in the game.

3.2. Fintte automata

Finite automata mathematically model 2 system that responds to discrete inputs
and outputs. The models arising from finite automata ‘capture the notion of a
fundamental class of systems, a class rich in structure and applications’ (Hopcroft
and Ullman, 1979, p. 14). ‘The actual applications of finite-state systems range
from the analysis of computational processes and neural networks to a theoretical
understanding of costly steategic choice in games. This latter application is of most
interest to this work, however, the vast modeling potential of these techniques
hints at a far richer set of potential applications for the general methodology
developed here.

The specific type of finite automata used here is a Moore machine. A Moore
machine designed to play the RPD is described by four elements, ? The machine
consists of a set of inrernal states. One of these states is designated as the starting
state, and serves as the initial state of the machine. Every internal state has

* Formally, 3 Moore machine is described by a four-tuple {Q,94,A4,8 ), witere @ is a finite set of
intermal states, g, € @ designates the staning state, A1 @ — 8, € {C, D} where S is the player's move
next period, and § is the transition function which maps the cument internal state of the machine and
the repored move of the apponent into a new intemnal state, 5 QX S5, =+ Q(where 5., €{C, Dl is
the opponent’s reported move st period).
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AlLL C states o
Pcoop w 16
S ctecp - 1.0
—— diocp - O
torminal o §
counting = 0
TFY 5talos - 2
pP<oop = 0.5
Crecp w 1.0
s
—— d-tocp w 1.0
terminal w @
counting w 0
TRIGGER states = 2
PCoop = 05
S c c Crecp - 0.5
— ° d-recp = 1.0
d d terminal w %
counting = 0
PUNISH
states w 3
TWICE c p-Coop - 0.33
. c.d c-recH = 065
- ° ° ' o d-recp = 0.6
o larminal - o

cd  counling w 2

Stales w §

Poop - 08
C-recp - 0.6
decp = 0.4
forminal w 1§
countling = 4

m'ach:'ne begins in its starting state and does the ;
(either Cooperate or defect). The machine then move
on the reported move of the opponent, and procee
the new sla}e. This process will continue until the

A more intuitive description of an autoimaton is
.(see Fig. 2 for some examples). The nodes of the
Internal states, with the upper-case labels inside o

S 10 4 new interna! state based

Eame ends.

given by its transition diagram
ransition diagram represent the
f the nodes showing the move

ds with the action specified in -
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that the machine will make when it enters that state. The transition function is
specified by the labeled arcs emerging from each node, where the lower-case label
indicates the observed move of the opponent and the arc points to the next state of
the machine. The starting state is indicated by the arc labeled S. For example, the
first machine in Fig. 2 always cooperates, regardless of the opponent’s actions.
The second machine models TFT. It starts in the left-hand state and cooperates. If
the opponenl is reported as cooperating, it stays in the left-hand state and again
cooperiales. However, if a defection is reported, a transition occurs to the right-hand
state and the machine issues a defection. The automaton will remain in the
right-hand state (and thereby continue defecting) until a cooperaiion is observed
by the opponent, at which time a transition to the lefi-hand state, and thus
cooperation, ensues. The third machine is a trigger sirategy, that begins by
cooperating and continues to do so unless the opponent defects. If a defection
occurs, the automalon enters a terminal (absorbing) state of defection. Once in the
terminal state, there are no possible transitions that will change the automaton’s
internal state, and therefore it will defect for the remainder of the game. The fourth
automaton describes a strategy that always cooperates, unless the opponent is
observed to defect. If a defection is observed, this strategy will defect for 1wo
consecutive turns, and then return o the cooperative state, The final machine
begins by cooperating four times in a row and then defects for the rest of the
game. As is apparent from the previous descriptions, automata caplure a large set
of potential strategies, including a number of those stralegies that have been of
central importance to various earlier studies.

The relevant history of a game is contained in the automaton’s current state. A
strategy that is based on the past n moves of either the opponent or itself will
require a maximum of 2” internal states. Thus, a TFT strategy, which must only
remember the opponent’s last move, requires two states, while a strategy that
bases its moves on the full history of the last two rounds {including both the
opponent’s and ils own last two moves) requires at most sixteen states. Also note
that although an automaton can have, say, sixteen states, only a subset of these
states may be accessible given the starting state and transitions inherent in the
machine. That is, there may be states in the machine that are impossibie to reach
during the course of the game.

The evolutionary mechanism used in this paper requires strategies to be
specified in a well-defined language. Here, each Moore machine is represented by
a string of 148 bits (see Fig. 3). The first four bits provide the starting state of the
automaton, * Sixleen nine-bit packets are then arrayed on the string. Each packet
represents an internal state of the automaton. The first bit in a given packet
describes the move next period whenever the automaton is in that state (0=
cooperate, | = defect), the next four bits give the transition state if the opponent is

R} . N
A string of four bits can represent 2° = 16 values.
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2010 1 100z BI01 1 pojp 0001 0 porp 008)......, .. 0101
148 bitg

The siructure of an aulomaton:

A sample dutomaton;

A Frdddgpan g e TR #

X - e
.Slazlmg interna} internal “*-'.—-—ﬁ##_f__#,'
internaf state § state 1 taternal
Slate state 15

where % ¢ {8, 1}, the starting internal state js

each interna} stale § hag " binacy Foted desimat (BCD) Pumber in f

the following slruciuge; 119}, and

internal state i
i PG g

tnternal state §. Opponent is Dbsc"ed Oppanent & Di“sﬂ ved

0= <ooperate to
i caoperate
defect BCbe o, -, 15} HCDLE c{’;k“ 15}

on to state § occurs, n internal
ates, in which ¢ase it returng

Fig. 3, The “biology" of avtomaty,

A.utomaia have emerged as g gy
congderations in the theory of games. The ¢}

ysis is deriveqd from a clagy of
tic algorithms, These

——
4
Although there gre 2148 Possible strin
some of the avtomagg are isomorphic for
each ef thege machines, Even with this dy
{on e order of 107, o5 sp).

b, . - . i H

; : uu} total number of umue Sleategies iy mueh fess, singe

ﬁ;;alp ¢, there are 16! Ways 1o redabel the internad states of

plication, the number of unigue $rategivs is sty very farge
o
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£} Initial random pepulation of 30 structures indexed by i, = |.
2} Fest each structure against the environment (i, ) = score).
3} Form a new population of 3¢ structures,
a} Top 20 [romn the old population.
b} Create 10 new structures via crossover and mutation:
i} Select 2 parents: Prob(f) = AL/ 57, B,
i1} Form 2 children by applying the crossover operator to the parents
iii} Mutate the newly formed children,
v} Repeat {i) through (it} until 10 new structures ere formed.
4} Increment { by } {next generation), and iterate (g0 to Step 2),

Fig, 4, The adaptive plan.

algorithms were developed by Holland (1975) for optimization problems in
difficult domains. Difficult domains are those with both enormous search spaces
and objective functions with nonlinearities (many local optima), discontinuities,
high dimensionality, and noise. Genetic algorithms provide a highly efficient
mechanism for effectively searching these spaces. Furthermore, their underlying
Structure indicates that they may be an appropriate model of certain types of
adaptive learning behavior (Miller, 1986). Finally, the existing literature from
computer science provides important analytic and empirical results regarding the
algorithm’s, and hence the model's, behavior.

Genetic algorithms are a large class of routines that share the following
characteristics: a population of well-defined Structures acts in an environment and
receives information on each member's performance, using this information new
populations are formed by selecting the better performing structures and modify-
ing them through genetic operators. The genetic algorithm used here is shown in
Fig. 4. Initially, thirty structures (strategies) are chosen at random. Each structure
is then tested apainst the environment (which, here, is composed of the other
structures} and receives a performance score (total payoff in the RPD). Given the
resulting scores, a new generation of structures is chosen by allowing the top
twenty performers to go directly into the next generation. Ten new structures are
also created by mating. The mating process occurs by probabilistically seiecting
two parents from the old population (with the probabilities biased by their scores),
and then forming two children through a process of crossover and mutation.

The crossover and mutation operations are both important elements of the
algorithm, as wetl as interesting ways to tractably model adaptive learning
behavior. In order to use these operalors, structures must be defined in an easily
manipulable language. Here, structures are represenied as binary strings, with each
address on any piven string controlling a particular aspect of the final structure
{(see Fig. 3 for the mupping). The crossover operator works as follows: two
structures are chosen as parents and a single crossover point, ¢, is randomiy
selected on the bit string. The first child is formed by taking the first ¢ bits from
the first parent and concatenating them to the bits following the c'th bit of the
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Q) ;
s—pd o’ 5 i

000909000500100000 DO10100000010
Tit-For-Two-Tats

S-b-d d o S —p
c,d

M’—'—n\
OUOUOUUOOOUGIUUOUD CO10100000000
Punis!1~Oncc-For-'l‘wo-Tals

’—"_—‘\"—n—u\
000060000000} 106100610106000000

Punish-Twice

0000000000001 100100010160000010
Punish-Twice.And.-Waijt
Fig. 5. An example of crossover on some atlomata,

second parent. The second child is formed in a similar wa

portu'ms of the two parenty strings. Mutation occurs wh
location on the string changes states,

The effect of crossover on the pew members of ih

Yy using the remaining
en a bit at a rapdom

y V two rounds of defection
fhn;fjn l;zl;i ;;a'l;:v ifgg)'lhe opponent {o reestablish cooperation (a **meaner” strategy
tioﬁzsizaﬁgveeggr descnl;c;c)! above h.as t'hree major components: (1) reproduc-
o Dase ? mance, recombination ('crossover). and (3) mutation. The
e ont of these lhre.e clements results jn 4 very powerful optimization
Seﬁ:}:}t :1i.[hAtp :z:i{rv galtzfnce It may appear that the plan is no more than ‘random

servation of the best [structure] (Booker et al., 1987, p. 23)
However, the algorithm is actuaily a sophisticated sampling procedure lh,atpdcvé!:
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ops optimized structures by independently manipulating important structural build-
ing blocks,

‘The incorporation of the crossover and mutation operators along with reproduc-
tion by performance, results in a powerful search algorithm. Useful structural
patterns increase or decrease based only on their own observed performances—in-
dependent of how the full structures are changing. Holland (1975), pp. 121-40,
demonstrated that the rate at which patierns are sampled closely corresponds to the
optimal sampling path in the canonical n-armed bandit problem, regardless of the
form of the payoff function. While the adaptive plan is generating an appropriate
sampling plan for the existing patterns, it is simultaneously penerating new
patterns 1o test. These modifications are- implemented in such a way that high
interim performance levels are maintained. Finally, the plan accomplishes this
while avoiding entrapment on false peaks. {For a more formal treatment of the
workings of genetic algorithms, see Holland (1975), Goldberg (1989), and Vose
(1991).)

The performance of the genetic algorithm has been extensively studied. Frantz
{(1972) showed that the algorithm effectively adapted to highly nontinear systems.
Martin (1973) investigated the asymptotic properties of a similar class of adaptive
plans. She found that under certain restrictions the adaptive plan converges to a set
of ‘good” structures. DeJong (1975) simulated various versions of the algorithm
over a variety of environments including: continuous, discontinuous, unimoda},
multimodal, convex, nonconvex, low-dimensionai, high-dimensional, and noisy
functions. His results, later corrected by Bethke (1981), indicated that the genetic
algorithm performed better than commonly used function optimization techaiques.

The above adaptive plan closely corresponds 10 the thought experiment dis-
cussed in the introduction of the paper. The idea of players adaptively learning
when resubmitting their programs is modeled in two ways. The first is an imitative
component, that allows players to exactly copy the best performing prograsms, This
is implemented when the plan admits the top twenty performers into the next
generation. The second component is an innovarive one, whereby players form
new programs by combining different parts of existing programs (crossover),
along with some unique modifications (mutation).

Finally, note that genetic algorithms represent a robusi and broad class of
adaptive algorithms. Such algorithms only require populations of ‘solutions’ to be
reproduced by performance and to have new members created via penetic opera-
tors (at least crossover and mutation). The algorithms are extremely robust 1o
actual algorithmic and parameltric choices. For example, all of the major qualita-
tive results reported here have been confirmed uging a variety of different
parameters (e.g., mutation rales, etc.) and algorithmic components (e.g., different
Strategy representations, selection rules, etc.). Thus, there appears to be a large
equivalence class of adaptive behavior that can be captured by genelic afgorithms.
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4, Methodology

et H - e s, H 4
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foner: m:[o rodoiogy: an adaptive plan, based on the genetic algorithm, is used to
mata that play a RPD, The advantage of this methodology is that the
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should be closely correlated with long term average performance. At the end of
each generation, the genetic algorithm discussed earlier (see Fig. 4) was applied to
form a new population. ’

5. Results

The results of the analysis indicate that the approach outlined above provides
insights into the evolution of strategic choice and the emergence of cooperation in
the RPD. Furthermore, they imply that significant differences exist among the
perfect information (PIE), 1% noise (1%NE), and 5% noise (5%NE) environ-
ments. The analysis focuses on the evolution of some important attributes of the
individual automata, the population, and also some experiments concerming the
robustness of the final strategies. Additional results can be found in Miller (1988).

The majority of the analysis that follows presents the averages over all thirty
members of each population and forty simulations conditional on the generation
and the noise level in the environment. ® Unless otherwise specified, a test based
ont a one-lailed Likelihood ratio lechnique ? {see, Freund and Walpole, 1980, p.
393) was used to determine whether the means were significantly different from

" The finat scores for cuch automaton were normalized by tuking ¥, =(x;— u)/8 + a, where x;
is the automaton’s raw score, g1 is e sample mean, 8 is the sample standard deviation, and a = 2 is a
parsmeter that determines the importance of relutive performance. The &; values below 0 were
truncated at 0. This nermalization procedure climinates difficulties associated with negative scores, and
more tmportantly is immune 1o affine ransformations of the payolf funclion. The choice of =2
implies that mstomata which do worse than two standasd deviations from the mean are not aflowed to
mate. B abso determines the importance of relative performance (as @ — = and o — 0 the sclection
probabilities go 1o | /N and R,/ X, &, respectively). Two parents from the old population were
randomly selected, where the selection probability for choosing automation / was X, /% %, Across
over point, ¢ € {1,..., 148}, and length, f€{1,..., 147}, were randomly selected and two new
automats were formed by exchanging the [ bits starting at the ¢'th position of cach parent, This
crossover procedure is slightly different from the one previously deseribed, and assumes that the sirings
are actually cireular rather than finear, This climinates a bins towards preserving the end poings which
is inherent in the Hnear procedure. After crossover, each bil was subjected 10 a 0.5% independent
chince of mutation (implying an expectation of 0.74 bil mutations prer string with a variance of 0.74
bits). The mating procedure was repeated untif fen new members were formed. This new population
was then masched as before. Again, nole that the above procedures are included for completeness, and
that the resulls are robust fo @ vasicty of parametric and algorithmic changes. Subsequent work with
atiemative suleetion and reproduction schemes indieate that the results are very robast to these choices.

 Where aliernative appronches are used, they are noled in the text.

" This test does not place execessive requirements on the saderlying distribution of the random
variables 5o long as sample sizes ere, samples arc of size forty) are Jarge cnough for an application of
the centsit timit theorem, The stochastic process deseribing the genetic abgorithm is likely to be very
complicaled and not Gawssian, Throughout most of the apalysis the focus is on the means of the
enviropments. Given the potentiad for unusual distributions, it is likely that other statistics might afso be

illuminating,
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Fig. 6. Average payoff per game ileration.

one another in pair-wise comparisons at a 97.5% level of significance. Gl.ve‘n‘lhc
potential path dependence of any given pqpulaiion, lhfr average charac.{c':r'as‘l‘lcs of
the population are considered to be the unit of anal_ys&s. In essence, this ass:u;n;»
tion implies that the expected characteristics of a given poeulanon as oppose ‘?
an individual are important. This perception is consistent %ﬂh concerns abou! the
overall performance of strategies in a given environment.

3.4, The evalution of payoffs

Fig. 6 shows the average payoff over all c?f {hf.: automata in the relevzu'l%
populations. The payoff is in terms of a single iteration of the game. If there zsi
always mutual cooperation, then the expected .payoff would be 3.0,‘ mli!ll:l‘
defection would imply a payoff of 1.0, and strategies lha.l randomly choqse mow.st
would expect to receive 2.25. The average payoff ;m_th in the three CBVII’OHI.I}E!’H?
quickly trifurcates, and each remains significani'ly different fro.m the otflle.rs’ past
the sixth generation. Initially, the average payoff in a‘lf !h‘ree cnwronmem'.s is about.
2.26. The expected payoff experiences a steady decline in all of the environments

 The impact of changing the unit of analysis to the individual is minimal, and in fact, tends to
increase the significance levels of tie statistical tests.
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over the first few generations (with maximum declines of around 79 per genera-
tion). Starting with the PIE in the seventh, the 1%NE in the eighth, and the S%NE
in the eleventh generations, each payoff begins to increase after reaching succes-
stvely lower turning points (1.81, 1.65, and |.41 respectively). After a period of
rapid improvement (with maximum increases ranging from 3% to 5% per genera-
tion), the average payoff tends to plateau by the twenty-fifth generation. ' The
final payoff levels are about 2.80, 2.54, and 1.94 for the PIE, 1%NE, and 5%NE
respectively. Implying that the expected performance diminishes by about 9% in
the 19%NE and 31% under the 5%NE. Under the PIE, payoffs in the final

1%NE the final distribution is slightly bimodal, while under the 3%NE an obvious
bimodal pattern emerges. The bimodality of the noisy distributions indicates a
definite path dependence for these latter populations—after the initial generation a
bifurcation occurs in which some populations achieve high payoffs and others do
quite poorly.

Fig. 6 illustrates how cooperation can emerge in these systems. Nole that in the
early penerations the agents tend to evolve strategies that increasingly defect.
These conditions do not however persist, and at some point there is an emergence
of cooperative strategies that tend to proliferate throughout the population under
the low noise conditions (a similar result was found by Axelrod, 1987). A
relatively simple explanation undetlies these dynamics. Initiaily, the strategies are
generated at random, and therefore the best strategy in such an environment is to
always defect. Thus, in the early generations the population of strategies tends 10
evolve towards always defecting. Although always defecting is a good stralegy in
a random environment, if some strategies can achieve mutual cooperation, they
could do quite well. In fact, as Iater results will confirm, this is exactly what
happens—a few strategies begin to reciprocate cooperation, perform well, and
proliferate in the population,

3.2, The evolution of automaron characteristics

Given the enormous number of possible automala, it js necessary to develop
some summary measures of automaton behavior to facilitate the analysis. The
measures developed here were guided by results from the existing theoretical and
empirical literature, and by no means exhaust the set of possible descriptive
statistics. The measures succinclly describe some of the important dimensions of
the strategies (see Fig. 2 for some examples). They may not, however, always

" Under the SUNE the leveling off is not ag pronounced, however, the estimated exponential growth

mte ot the final generation using the previous ten generations is approximately 0.34%. If this ritte were
to continue the average payoff would reach 2.25 in about 44 more generations.
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Fig. 7. Average accessible states per minimized avtomaton.

prove adequate, as they give equal weight to all accessible states (the last
automaton in Fig. 2 illustrates potential problems). o .

The first characteristic is the size of the automaton, which is given by.ns
number of accessible states. A state is accessible if, given the aulomutﬁon’s starting
state, there is some possible combination of opponent’s moves lhat.wﬂi resu.n in a
transition to the state. Therefore, even though all automata are defined on srxu':en
stales, some of these slales can never be reached during a game. The lhe(')ren(;al
literature has often used this variable as a determinant of con?pFexuy (Rublnslf{:n,
1986). 2 Automaton theory demonstrates that there exists_a m'mtmzn'l state machine
for any given behavioral pattern, and that this machine is unique up to :n
isomorphism (see, for example, Harrison, 1965, (T“huplcr l-l). Thus, all of the
measures of an automaton's behavior used in this analysis are based on the
implied minimal state machine, o »

The average number of accessible states for the minimized automata is sh_own
in Fig. 7. The initiai, randomly chosen, automata averaged about 12.25 states out

T s ternative measures of complexity in automata do exist. For example, following the work of
Khrone and Rhodes, automaton could be decomposed into their prime components, amd then cump!c_x-
ily measuses based on the type and connections of these components could be developed (see Arbib,

1968, Chaplers 3, 5, and 6).
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of a possible sixieen. The number of states in the PIE and 1%NE declines until the
eleventh generation, at which point it levels off after about a 10% reduction.
Under the 5%NE the decline continues until about the twentieth generation, after
which time the number of states stabilizes al a 25% lower level than in the first
generation. In the final generation the number of states is 11.01, 11.29, and 9.03 in
the PIE, 1%NE, and 5%NE respectively. This implies that under the more extreme
noise condition, about 20% fewer states develop. All of the declines are statisti-
cally significant, as is the difference between the number of states in the 5%NE
verses the PIE and 1%NE past the fifteenth generation. If the number of states is a
good measure of complexity, then a possible conclusion is that strategic simplifica-
tion, especially in the presence of noise, is advantageous in the RPD. Theoretical
models (e.g., Heiner, 1983) suggest that simple rules of thumb may be superior in
the presence of uncertainty. Further analysis indicates that the high noise strategies
tended to rely on the use of terminal states, thus supporting this hypothesis.
Allernative explanations for the complexity loss are also possible. For example,
simple machines may be more likely to arise during early evolutionary dynamics
(and, the fifty generation lime scale may be too short to observe any rise in
complexity), or perhaps effective complex machines require more than the maxi-
mum atlowed sixteen states.

Notions of the actual behavior of a given machine during a RPD are derived
from the actions and transitions of each accessible state. The cooperation-reciproc-
ity (defection-reciprocity) is the proportion of accessible states that return an
observed cooperation (defection) by the opponent with a cooperation (defection).
These reciprocity measures give only a general notion of a strategy’s reactions,
since they assume that all accessible states are equally likely. The importance of
reciprocity is suggested by the work of Axelrod (1984). Figs. 8 and 9 show the
respective evolution of cooperation-reciprocity and defection-reciprocity. Notwith-
standing the environment, strategies were always more likely to reciprocate a
defection by the opponent with a defection than to cooperate after a cooperation.
Similar to the patiern observed throughout the analysis, a period of rapid adjust-
ment is followed by some minor corrections, and then a period of relative stability.
Differences between the PIE and 1%NE verses the S5%NE are statistically signifi-
cant past the seventh generation. " The differences between the PIE and 1%NE
are not statistically significant at the group level of analysis, but are significantly
different past about the twentieth generalion when the individual is used as the
unit of analysis. The final values for the cooperation-reciprocity are 0.44, 0.49,
and 0.36 in order of increasing environmental noise. For the defection-reciprocity
the corresponding values are 0.70, 0.65, and 0.76. Therefore, with high noise
levels, evolved automata do not reciprocate cooperation as much, and are less

B The cooperation-reciprocity measure for the PIE and 5%NE are only significantly different ot the
3% level over the final cight periods.
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forgiving of a defection by the opponent than under better information. A rise in
the cooperation-reciprocity, implying a greater benefit from cooperative behavior,
occurs in both the PIE and 1%NE around the same time that the payoffs under
these two conditions begin lo increase. Since this measure represents an average
over all 30 members of the population, even a slight rise can indicate that a small
number of the agents have high levels of cooperation-reciprocity. The peneral
pattern that emerges from the reciprocity measures is that defections are not
tolerated and that cooperation is reciprocated at much lower levels. Furthermore,
at high noise levels these patierns become more pronounced, while at low noise
levels there is some evidence, at the individual level of analysis, for them
moderating relative to perfect information.

Terminal states are states that have transitions only into themselves, that is,
once a terminal state is reached the automaton remains in the state for the
remainder of the game. These states are of interest since they are required for any
of the well-known trigger strategies (Friedman, 1971). The average number of
terinal states is given in Fig. 10. After a period of rapid growth, the PIE and
196NE values peak around the eleventh generation, decline, and then stabilize at
about 0.03 and 0.01 respectively. Under the 5%NE, terminal states continue to rise
until around the twentieth generation, at which time they level off to about 0.2].
The 5%NE is significantly different from the other two past the fifteenth genera-
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tion. The PIE and 1%NE are significantly different from each other only at the
individual level of analysis. The final number of terminal states in the nosiest
environment is around ten times the level in the other two. The fact that terminal
states are more often used in noisier environments supports the earlier argument
that rules of thumb may be important under high uncertainty. In essence, one way
to deal with high noise levels is not to deal with them.

Once a terminal state is reached, the automaton’s moves are fixed for the
remainder of the game. Thus, not only the number of terminal states, but also their
behavior is of interest. Defection quickly becomes the predominant terminal action
in all of the environments. In the 5%NE almost 100% of the terminal states defect
within three generations. The other two environments experience more fluctua-
tions, with the 1%NE tending to have fewer terminal defections, '* The high
proportion of defection in the terminal states is consistent with the types of trigger
strategies suggested in the theoretical literature.

The above analysis indicates that a common paltemn pervades the evolution of
the automata's characteristics. Initially, a period of rapid change occurs. This
change quickly slows and plaleaus after about ten generations-with the actual
leveling off taking longer as the noise in the environment increases. Sometimes in
the PIE and 1%NE a short period of readjustment occurs just prior to the plateau.
A definite bifurcation appears between the 5%NE and the other two environments.
There is also evidence that the impact of low noise levels is qualitatively different
from more extreme levels relative to perfect information. That is, a low level of
noise may make automata more cooperative and less likely to punish defections
than without noise, while higher noise levels have the opposite effect.

5.3. The evolution of population characterisiics

Another area for analysis is the evolution of some general population character-
istics. Knowledge about the dynamics of the population in the model can suggest
important hypotheses concerning the behavior of various systems. Analysis of the
creation dates and survival probabilities of the agents indicates that newly created
structures have a more difficult time surviving as the population becomes more
evolved. Notwithstanding this observation, older structures do not appear to
dominate the populations, implying a relatively dynamic environment. Unlike the
individual automaton’s characteristics discussed in the previous section, the gen-
eral population characteristics tend to separate the PIE from the other two
environments. Under the PIE, structures created in later generations have a more
difficult time surviving then those created earlier. Therefore, one major effect of
noise appears to be the enhancement of the survival probability of new entrants,

M These differences ore rarely statistically significant.
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Table |
Average scores of top automats in various environments
Environmenl
Own population Randomly generated Other top
(Final gencration) opponents performers
Pi 2.85 2.56 217
T%NE 2.67 2.58 2.08
S9NE 1.99 2.6t 1.76

5.4. The robusmess of the evolved automata

The structures in each population coevolve in isolation from other populations.
Thus, the observed results may be due to the automata adapting to their specific
environment. To assess the impact of specialization, three experiments were
conducted. The experiments maiched the top ;i)erforming automaton from each of
the final populations of the forty simulations % against: (1) a group of randomly
generated automata, (2) each other, and (3) a representative sample of the
strategies submitted for Axelrod’s second human tournament (Axelrod, 1984). 16
Table | summarizes the performance of the top performing automata in their own
final generation, as well as in the first two experiments.

The first experiment took each of the top performers and matched them against
twenty-nine randomly generated machines. This environment is similar to the one
that the automata initially faced in the first generation. On average, the top
automata did better than their opponents. Under the PIE and 1%NE the scores
were about 15% higher, while they were about 17% higher in the 5%NE. All of
these differences were statistically significant. In the PIE and 1%NE the ultimate
payoff to the automata in the random environment was less than their payoffs in
the final generation, while in the 5%NE, the payoff was higher. The likely
explanation for these results is that, in the lower noise environments, there exist
population specific benefits arising from establishing cooperation that could not be
realized playing random automata. In the 5%NE, evolved strategies are probably
able to exploit poor players (via, for example, terminal defection), and thus can do
well against random opponents.

The previous experiment indicates that fundamental changes in the evoived
automata allow them to excel in a random environment. To subject the best
automata 1o a more challenging world, they were matched against one another.
The scores resulting from this experiment were 24%, 22%, and 12% lower than

13 . . . .
Only the first thirly simulations were used in the second experiment.

16 .
'm.anks to Bob Axelrod Tor supplying the representative cight stralegies from his tournament, and
to J. Michael Coble for programming assistince.
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the automata’s final generation scores in the PIE, 1%NE, and 5%NE respeclively.
However, only the first two changes were statistically different. The low scores
achieved in this environment indicate that population specific effects are some-
what important, especially under better information. .
An intriguing test of the top performers in a context other than a game agz'unsl
other automata is provided by matching them against a set of strategies submitted
by human subjects for inclusion in Axelrod’s second tournament {Axelrod, 1.9{54).
The set of strategies used here consisted of eight representatives out of (he original
63 entries. These eight accounted for 98% of the variance in the final lourn_ame{n
scores. The forty top PIE "7 automata achieved an average score of 352 points in
the 151 round tournament. One of the automata did as well as the top pgrformer in
the tournament, TFT, and nine of them were above the estimated median score in
the tournament. A control group of forty randomly generated automata were also
run against the representative strategies. Their average score was 295 points, zm‘d
three of the forty scored higher than the median. The distribution of these scores is
given in Fig. 11. The 19% higher score of the evolved verses the random automata
was statistically significant. Given that the evolved agents had been developed

7 Only the PIE automata wese used since Axelrod's toumament did not aliow for the possibility of

noise.
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only in environments composed of other automata, their retutively good perfor-
mance in the completely novel environment of human opponents is reassuring.
More imporiantly, however, is the fact that their performance, as well as the
general empirical results, seem to be very consistent with the human tournament,
Thus, the use of the methodology developed in this paper may provide a basis for
benchmark experimentation in cases where costly experl tournaments are infeasi-
ble.

The automaton that tied for first place in Axelrod's tournament had many
characteristics that were similar to TFT. Iis cooperation-reciprocity was 0.83—close
to TFT's 1.0 measure. Unlike TFT's perfect defection-reciprocity of 1.0, the
automaton’s value was 0.42, The automaton had a minimized size of 12 states
verses the 2 states necessary for TFT. When played against some standard RPD
strategics, the automaton performed very similarly to TFT, with a bit more
tolerance of defections for short periods.

5.5. Extensions of the empirical analysis

A wide variety of potential extensions of the empirical analysis exists. The
results imply that the level of noise in the environment is quite important. Low
levels of noise tend to promote cooperative behavior while higher levels seem to
disrupt it. A definite bifurcation occurs under different information levels. One
unresolved question is whether the dynamics undergo a smooth transiticn over
various noise levels. The impact of alternative informational configurations, for
example, asymmetric noise levels, conid also be explored. Questions about the
effect of different payoff structures on the likelihood of cooperation develeping
are also amenable to experimentation. The general form of the RPD allows a lot of
flexibility in the actual payoff values. While the experimental outcomes of certain
standard payoff matrices are well known, it is possible that other configurations
may alter the qualitative results.

The ability to replicate, probe, and recover the computational system also
allows a variety of other hypotheses to be interactively tested. Directly incorporat-
ing a cost 1o the size of each automaton would yield a better understanding of the
role of procedural complexity in these games. Finally, it is possible to run two
separate coevolving populations playing against each other. Results indicate that a
single population tends to rapidly Jose heterogeneity. By running two simuitaneous
populations the consequences of this foss would not be as severe, and it is likely
that better strategies will evolve.

6. Conclusions

The elements of this analysis combine to form a methodology well suited for
the analysis of adaptive strategic choice in games. An obvious extension is the
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analysis of the evolution of strategies across large classes of games, for cxflmp!e.
the Rapoport and Guyer {1966) 2 X 2 game taxongmy. Ffurren! work scnrch.i.ng for
generic patterns of adaptive strategic behavior in this class of games Is now
underway.

While the above model focuses on the evolution of automata, a m‘uch more
general mode! is suggested. Systems of artificial adaptive agents c'reulte inherently
dynamic models of adaptive learning phenomenon that can be easily :mplemcme.d
and analyzed (HoMand and Miller, 1991). Thus, such models may be an appropri-
ate choice for a wide variety of economic analysis.

7. For further reading

Binmore and Dasgupta {1986).
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