Journal of Economic Dynamics and Control 18 (1994) 6196, North-Holland

Characterizing effective trading
strategies

Insights from a computerized
double auction tournament*

John Rust

University of Wisconsin, Madisen, WI 33706, USA

John H. Miller

Carnegie Mellon University, Pitsburgh, PA 15213, US4

Richard Palmer

Duke University, Durham, NC 27706, USA
Sanita Fe Institute, Santa Fe, NM 87301, USA

Received January 1992, final version received September 1992,

This paper presenls a corparative analysis of 30 computer trading programs that participated
in a double auction tournament held at the Santa Fec Institute in 1990 and 1991, Qur objective
is to characterize the form of effective trading strategies in double auction markets. We find that
& simple rule-of-thumb is a highly effective and robust performer over a wide range of trading
environments, significantly outperforming more complex algorithms that use statistically-based
predictions of future transaction prices, explicit optimizing principles, and sophisticated “earning
aigorithms’.

Correspondence to: John Rust, Department of Economics, University of Wisconsin, Madison,
W1 33706, USA.

*We are grateful for the generosity of the Santa Fe Institute and its Economics program
for providing the facilities, salury. administrative, and computational sapport that made
this research feasible. John Rust is grateful to the Alfred Slean Foundation for providing
tournament prize money, and National Science Foundation grants SES-8721199, which provided
computer hardware, and SES-8010046, which provided funding for matching human experiments
at the Experimental Science Laboratory at the University of Arizona. International Business
Machines provided funding for tournament organizational expenses. Jokn Miller would like to
acknowledge an equipment grant from Sun Microsystems. We received many helpful comments
from participants in seminars at the University of Oslo, Stockhoim, and the London School of
Economics.

0163-1889/94/306.00 © 1994— Elsevier Science Publishers B.V. All rights reserved

62 J. Rust et al., A compurerized doulle auction tonrnament

1. Introduction

The double auction (DA) market is the primary trading institution for many
types of commodities and financial instruments in organized markets around
the world. A classic example of a DA market is the trading pit of the Chicago
Board of Trade where commodity traders cali out offers to buy (bids) or offers to
sell (asks) attempling to negotiate the best possible deals. DA markets have
remarkable efficiency properties which have been documented in numerous
laboratory experiments using human subjects. By assigning human subjects
tokens with fixed redemption values and token costs, well-defined supply and
demand curves can be constructed. The intersection of these curves defines the
price and quantity at which neoclassical economic theory predicts trading will
occur, the competitive equilibrium (CE) solution. The complication is that in
most experimental markets each trader only knows their own token values: no
single trader has enough information to determine the market supply and
demand curves in order to compute the CE. As a result, traders in DA markets
face a complex sequential decision problem: how much shouild they bid or ask
for their own tokens, how soon should they place a bid or ask, and under what
circumstances should they accept an outstanding bid or ask of some other
trader? Since other traders’ token values are private information, each trader
must try to make inferences about these values from the unfolding history of
observed bids, asks, and acceptances. This information has considerable value,
and we would ordinarily expect traders to delay making bids and asks so they
have a chance to learn about market conditions. However, experimental DA
markets run for a fixed amount of time, typically several minutes. This creates
a difficult trade-off, for if traders spend too much time looking for a good deal,
they may find themselves locked out of the market without trading anything.

Modern economic theory has attempted to explain observed trading behavior
in DA markets as the rational equilibrium outcome of a weli-defined game of
incomplete information. The ‘null hypothesis’ is that observed trading behavior is
a realization of a Bayesian—Nash equilibrium (BNE} of this game. This approach
treats traders as having initial prior distributions about the unknown token values
of their opponents, and assumes that traders have common knowledge of each
other’s prior beliefs. In a BNE, traders also have common knowledge of the
trading strategies used by their opponents. In particular, each trader knows
that his opponents use stralegies that maximize their expected trading profits
given any realized history of the game: a BNE is an N-tuple of trading strategies
that are mutual best responses. These strategies will ordinarily be nontrivial
functions of the entire realized history of the game since all traders continually
update their beliefs about their opponents’ token values according to Bayes Rule.!

'For example, in Markor Eguilibria strategies depend on the irading history via each trader’s
posterior distribution of opponents’ token values,

JoRust et al., A compurerized double auction rourtiament 63

Unfortunately, due to the inherent complexity of continuous-time games of
incomplete information, it is extremely difficult to compute or even characterize
these equilibria. As a resuit, relatively little is known theoretically about the
nature of equilibrivm trading strategies.? Although experimental studies have
provided considerable empirical evidence on trading behavior, they have failed
to cast light on trading strategies which are essentially unobservable.

In order to try to shed some new light on the problem we sponsored
a computerized DA tournament. Thiriy entrants submitied computer programs
playing the roles of buyers and sellers in a simplified, discrete-time DA market,
vying for cash prizes totaling $10,000 distributed in proportion to the trading
profits earned by their programs over the course of the tournament. In ex-
change, we obtained a computerized DA market that serves as a unique
laboratery for studying trading strategies and their implied behavior.

The use of computer tournaments to get insights on complicated dynamic
games is somewhat unorthodox but not without precedent. Axelrod (1984)
sponsored a tournament to study the repeated prisoner’s dilemma game. The
results of that study were surprising: the winning program, Tit for Tat, turned
out to be one of the simplest strategies, significantly outperforming much more
sophisticated strategies employing statistical predictions, formal optimization
principles, and punishment strategies suggested by game-theoretic analyses.?
We obtain a similar result in our DA tournament: the winning program,
submitted by economist Todd Kaplan of the University of Minnesota, turned
cut to be simple rule-of-thumb which was one of the shortest programs submit-
ted to the tournament. The strategy proved to be a highly effective and robust
performer over a wide range of trading environments, significantly outperform-
ing much more complex strategies that used statistically-based predictions of
future transaction prices, explicit optimizing principles, and sophisticated ‘learn-
ing algorithms’. The winning strategy can be described quite simply: wait in the
backgrowmd and let athers do the negotiating, but when bid and ask get sufficiently
close, jump in and ‘steal the deal’.

*To our knowledge. the only available results for the continuous DA are due to Wilson (1987},
who provided @ partisl characterization of a set of strategies that satisly necessary conditions for
a BNE. In Wiison's eguitibrium. ‘traders are endogenously matched for transactions via a signalling
process using delay as the primary signal' (p. 412), However. a recent analysis by Cason and
Friedman {1992} shows that bevond the prediction of high ex posi cfficiency, almost all the other
predictions of Wilson's equilibrium are inconsistent with the behavior of human traders in labora-
1ory experiments.

*More recently, Selten, Mitzkewitz, and Uhlich (1990} conducted & tournament for computer
programs in a twenty-period repeated Cournot ducpoly game. They also found that the system
tended to converge to efficient cooperative solutions using fairness criteria to coordinate on ‘ideal’
points aleng the Pareto-efficient frontier. The winning strategics achieved efficient coeperative
solutions using a ‘mensure for measure’ policy that might be thought of as o generalized form of T
for Tat.

64 J. Rust et al., A vomputerized double auction tournament

Section 2 provides a brief description of the tournament and our implementa-
tion of a computerized DA market. Section 3 provides a taxonomy of the
trading programs submitted to the tournament. We classify programs along
several dimensions, including their relative complexity, adaptivity, randomness,
and use of explicit optimization techniques. Section 4 summarizes the results of
the 1990 (cash) tournament and subsequent noncash ‘scientific tournaments’.*
The tournament results reveal the robustness and clear superiority of the simple
‘wait in the background strategy’ over a wide range of environments. Section 3
presents some conclusions and directions for further research.

2. Structure of the DA iournament

The trading programs used in this study were submitted in response to
advertisements for 2 ‘Double Auction Tournament’ held at the Santa Fe Insti-
tute in March 1990. Cash prizes totaliing $10,000 were offered to 2 maximum of
100 entrants in proportion to the trading profits earned by their programs over
the course of the tournament. In addition to prize money and wide publicity,
a substantial effort was devoted to make the programming and debugging of
trading strategies as easy as possible. This included development of the Santa Fe
Token Exchange (SFTE) which opens at the start of each hour for token trading
over the worldwide Internet computer network.’

The computerized DA was implemented via a message-passing protocol that
specifies the form of allowable messages that programs can send, such as bids,
asks, and buy and sell orders. Entrants were provided with a simple ‘skeleton’
trading program (written in C, Fortran, and Pascal) which handled all the
message-passing housekeeping, allowing them to focus on the logic of their
strategies, rather than on programming details. A central monitor program
coordinates the trading process by communicating with all of the trading
programs, executing their buy and sell orders and relaying their bids and asks to
the other traders. Trading programs (which could also be interfaces to human
traders) communicate only with the monitor and not directly with each other as
illustrated in fig. 1. It is important to note that the monitor program is only
a clerk: it is not an ‘auctioneer’ and has no market-clearing authority.®

*Since the focus of this paper is on the ‘micro’ behavior of individual trading strategics, our
summary of the tournament resuits is intentionally briel. See Rust, Miller. and Palmer {1992} for
a more in-depth analysis of the aggregate market behavior implied by these strategies.

*Many entrants reported that the SFTE was useful for refining their trading programs in advance
of the gctual tournament. We alse distributed ‘free-ware’ to allow entrants who did not have Internet
access to set up their own local token exchanges.

%The monitor does enforce trading rules, and can impose upper and lower price limits, Tt also has
the authority to censor illegal or late messages, aithough no cpu-time limits were imposed in the
actual tournament.

J. Rust et al., A computerized double auction tournament 65

Buyer 1

Saller 1

Buyer 2 |« w Monitor

/ \ Selier 2 |~

Buyer 3

Fig. I. Interplayer communication via the monitor.

The structure of our computerized DA market is very similar to the continu-
ous-time experimental DA markets described in section 2. The major differences
are 1} time is discretized into alternating Bid/A4sk (BA) and Buy/Sell (BS) steps,
and 2) transactions are cleared according to ‘AURQRA rules”. The DA market
opens with a BA step in which all traders are allowed to simultaneously post
bids and asks. After the monitor informs the traders of each others’ bids and
asks, the holders of the current bid (highest outstanding bid) and current ask
{lowest outstanding ask) enter into a BS step.” During the BS step, either trader
can accept the other trader’s bid or ask. Ifan accép{ance gccurs, a transaction is
executed.® A trading period is simply a set of § alternating BA and BS steps.

The discretization of time was adopted to simplify the programming of
trading strategies and improve the synchronization of communications between
traders and the monitor in a multiprocessing or network computing environ-
ment where delays may vary from trader to trader and moment to moment. In
a continuous-time environment ‘faster” traders have an inherent advantage. This
speed advantage may arise due to communication delays (e.g., simultaneous
messages sent from a trader in Japan and Chicago may arrive at different times
at a central computer in New York) or due to processing delays (e.g., machines
may be able to recognize and respond to certain conditions faster than humans).
By discretizing time and setting sufficiently wide response-time limits, we can
effectively guarantee that ail traders have equal trading opportunities. In the
limit, our implementation of a discrete-time DA market is not restrictive since
a continuous-time trading environment can be arbitrarily well approximated by
a discrete-time environment with very many short trading intervals.®

The AURORA rules were motivated by the proposed AURORA com-
puterized trading system developed by the Chicago Board of Trade. AURORA

"If a current bid (ask) does not exist, then all buyers (setters} enter into the BS step.

¥1{ both parties accept each other's offers, the monitor randomly chooses between the current bid
and ask to determine the transaction price,

®The same point applies to price units in our DA market, which were rounded to the nearest
k p p
integer.

66 Jo Rust et al., A computerized double auction tournament

rules stipulate that only the holder of the current bid or current ask are allowed
to trade. We adopted these rules as a substitute for ad hoc tie-breaking rules
which are necessary in discrete-time trading environment when several traders
are able to simultaneously accept an outstanding bid or ask. Presumably the
Chicago Board of Trade had a very different motivation for considering the
AURORA rules. '? In our case, we experimented with alternative sets of trading
rules and found that the AURQRA rules produced a more interesting DA game,
as well as one that was perceived as ‘fairer’ by participants. Strategically, our DA
breaks into a series of two simultaneous move subgames: 2 multiplayer game lo
acquire the current bid or ask in a BA step, and a two-player game involving
a binary accept/reject decision in a BS step. In early human experiments using
random tie-breaking rather than AURORA rules, we found that traders often
expressed frustration that trade execution seemed more a matter of luck than
strategy after repeatedly losing random tie-breaks for the acceptance of an
outstanding bid or ask. On the other hand, one might criticize the AURORA
rules on the grounds that it makes it harder for traders to remain in the
background by forcing them to ‘show their hand’ by posting a winning bid or
ask belore being allowed to trade. We have found, however, that these ruies do
not place a significant constraint on background traders: they can still stay
quietly in the background for most of the trading period, jumping in the
moment they detect an attractive bid or ask. Indeed, this is precisely the strategy
followed by the winner of the tournament.

An individual DA game is divided into one or more rounds, and each round is
further divided into one or more periods. A single period of the DA game
consists of a fixed number of alternating BA and BS steps as described above.
A single round of the DA game consists of a fixed number of periods. Token
valuations are held constant for all trading periods within a given round, but are
allowed to change between rounds. Similarly, the set of traders is held constant
for all rounds within a given DA game. The reason for structuring DA games to
have multiple rounds and periods within rounds is to control traders’ abilities to
learn about their opponents. DA games with many periods allow traders to
learn the vaiue of each others’ tokens, while DA games with many rounds allow
traders to learn about each others’ strategies.

At the start of a DA game the monitor broadcasts public information to the
traders, including the number of buyers and sellers and their identities, the
number of rounds, periods, and time steps, the number of tokens each agent will
have, and the joint distribution F from which the traders’ token values are
drawn. Next, the monitor sends each trader a packet of private information,
namely, their realized token values. Since public information is provided by

10%ince AURORA rules have the effect of making all transactions publicly observable, they may
have been desigred partly in response to trading abuses that were uncovered in the Chicago
Exchanges in the late 1980's.

o Rust et al., o computerized double auction tournament 67

a simultaneous broadcast to all traders, it serves as a means of ensuring that
traders have common knowledge about all relevant game parameters. The joint
distribution F was communicated to traders using a lour-digit gametype vari-
able. Token values are represented by T, where j indexes the trader and
k indexes the token assigned to the trader. Tokens are randomly generated
according to

A+ B+ Co+ Dy, of jisabuyer
w= ()

A + Cy + Dy, i jis a seller.

where'! 4~ U[0, R,], B~ U[0, R,], C,~ U0, R3], and Dy ~ U0, R,]. Notice
that when R, = R, = Ry = 0, we have the standard independent private-values
model where tokens are independently uniformiy distributed on the interval
10, R,). A gametype equal to 0 indicates an environment where redemption
values were generated by an unspecified process.

To insure that tournament earnings were not due to a series of lucky token
draws, we developed a sampling scheme that guaranteed that all trading pro-
grams had equal surplus endowments with probability 1.'* Once a random set
of token values was drawn according to the sampling scheme given in (1),
trading programs were randomly selected to play in a set of N pames (where
N =30 is the total number of entrants} subject to the constraints that no
program played a copy of itself in the same game and all programs played all
positions (Bf, B2, 81, 82, etc.} an equal number of times. After this set of N pames
was completed, the scheme was repeated with a new set of token values. It
folows that the differences in the trading profits earned by the traders can be
ascribed to differences in their trading ability, since each program received the
same endowment of tokens and encountered roughly the same collection of
opponents in a large number of replications of the DA game.

Tournament entrants were told that their programs would be placed in an
unspecified number of alternative envirommnents. Each environment is a complete
specification of all relevant parameters of the DA game listed in table 1.
Participants were informed of potential ranges for each of the parameters, but
were not given any specific advance information about how the actual environ-
ments would be sefected. The actual DA tournament consisted of playing a large

¥ Each of the four digits of the gametype variable correspond to {R,, R,} necording to the
base-3 coding, R; = 3 — | where k(i} is the ith digit of gametype,
u 2 ¥

'2In the case of two trading programs that were only programmed to play one side of the market.
a Skeleton stand-in trader was substituted in the games they refused 1o play. There are sipht
variations in actual token endowments caused by the fact that one program occasionadly died
midway through 2 trading period. resulting in forfeiture of its potentizl surplus in the remaining
periods of the game.

68 J. Rust er al., A computerized double auction tournament

Table 1
DA trading environments,

Environment
Parameter BASE BBBS BSS5 EQL LAD PER SHRT SML RAN TOK
gametype 6433 6433 6453 0 0 6453 6433 6433 0D0T 6453
minprice 1 | H ! 1 H i 1 1 H
maxprice 2000 2000 2000 2000 2000 2000 2000 2000 3000 2000
nhuyers 4 6 2 4 4 4 4 2 4 4
nsellers 4 2 & 4 4 4 4 2 4 4
ntokens 4 4 4 4 4 4 4 4 4 1
nrownds 2 2 2 2 2 6 2 2 2 2
nperiods 3 3 3 3 3 1 3 3 3 3
neimes 75 30 30 75 75 75 25 30 30 25
enmes 1624 1624 1624 1624 1624 1624 1624 3428 1624 1624

Guames/player 56 56 36 36 56 56 56 112 56 36
Periods/player 336 336 336 336 336 336 336 336 336 336

Conversion ratio
(x 1074 681 895 973 348 357 697 704 632 104 206

number of DA games in ten separate environments presented in table 1. Each of
the ten environments were allocated $1,000 prize money, and separate conver-
sion factors were calculated to translate token profits into dollar earnings. The
conversion {actor ¢(i) for environment i is the ratio 1000/TS{{}, where TS(f) is the
total surplus available in environment i. Thus, if trading in the tournament was
100% efficient (i.e., total profits = total surplus), then payouts in the tournament
would be exactly $10,000. However, actual doliar payments in the tournament
were $8,937, corresponding to an 89% efficiency ratio. Overall, we ran a total of
18,114 games in the ten separate environments, comprising 30,312 individual
periods of play.

One can see from table | that the tournament subjected programs to a wide
range of trading conditions. The base case (BASE) was an environment similar
to the one used in pre-tournament trials at the SFTE. Other environments
include duopoly and duospony (BBBS and BSSS), an environment where ali
traders receive the same token values shifted by a common random constant
(EQL), an independent private values environment where cach trader’s token is
an IID draw from a uniform distribution (RAN), a single-period environment
that prevented traders {rom learning from previous market outcomes (PER),
a ‘high-pressure’ environment where the traders’ time allotment was very short
(SHRT), and an environment where each trader was only assigned a single token
(TOK). Qur intention was to force programs to compete under a broad range of
conditions in order to provide a rigorous and comprehensive test of their
effectiveness.

J. Rust er al., A computerized double auction tournament 69

3. Summary of DA frading programs

Thirty programs were submitted to play in the first DA tournament in March,
1990, in which the $10,000 prize money was paid out. Table 2 presents a sum-
mary of thirty-four entries, the thirty DA entries listed by the name of the
participant(s) who submitted the program together with four additional pro-
grams developed by the authors to serve as experimental controls in subsequent
‘scientific tournaments’.}* Of the thirty entries, filteen were from economists,
nine from computer scientists, three from mathematicians, and the remaining
three were from an investment broker, a professor of marketing, and a joint
entry from two cognitive scientists.’* Three of the entries were outgrowths of
research papers describing formal models of DA trading behavior, including the
Ledyard-Olson entry [based on Easley and Ledyard (1992)] and Friedman-
Kennet [based on Friedman (1991)]. Several of the entsies emerged from
working groups which co-developed sets of strategies, in some cases pre-testing
them in ‘local tournaments’ using our double auction software. These groups
inciude seven entries from the Economic Science Lab (ESL) at the University of
Arizona, three from the University of Minnesota, and two each from the
University of Colorado {Economics) and Carnegie Melion University (Com-
puter Science). All of the entrants programmed their strategies by filling out
bid/ask and buy/sell subroutines of a skeleton trading program suppiied by the
organizers. Although versions of the skeleton program were available in C,
Fortran, and Pascal, almost all of the entries (26 out of 30) were programmed in
C. Only two were written in Fortran and two in Pascal.

The first step in our analysis was to classify the programs along several
dimensions:

simple vs. complex ,

adaptive vs. nonadaptive,
predictive vs. nonpredictive ,
stochastic vs. nonstochastic,
optimizing vs. nonoptimizing .

13 Obviousty 1o avoid conflict of interest, the avthors did not submit any of their own strategies to
the original cash toursament held in March 1990. Among the non-SFI entries, in cases where
trading programs were deveioped by teams of individuals and we were unable 1o determine the
primary author, we substituted a program nickname supplied by the authors. We also received two
anenymous entries.

#* Four of strategies included in table 2 were programmed by the suthors and were not included in
the March {990 lournament to avoid confiict of interest. These strategies include a 'skeleton
program’ provided as a simple example to all entrants, a program Z7 which implements the Gode-
Sunder (1992) ‘zero intelligence’ strategy, a ‘truthteller’ program which always places bids and asks
cqual to its true token valuations, and a *pricetaker program which attempis to implement a naive
pricetaking strategy. The programs were designed to serve as experimental controls for testing
various hypotheses about aggregate market behavior, and are not anaiyzed here. We refer the reader
to Rust, Palmer, and Miller (1992) for analysis of the subsequent ‘scientific tournaments’ that
included all programs listed in table 2.

70 J. Rust et al., A compuierized double auction tonrnament

Table 2

Taxonomy of DA trading programs.®

Author/Nickname Institution F L C A S P 0 CPU
Anon-1 Anonymous s C 2 [86
Asnon-2 Anonymous s C 3 I 89
Jacobson Carnegic Mellon CS C 3 X [86
Ringuetie Carnegie Mellon CS C 2 X t 835
Golden Buffalo Colorado E C 2 X 2 88
Silver Buffalo Colorado E C 2 X 2 88
Lin Poriland State E C 2 X i 89
Perry Portland State M C 3 X 2 88
Anderson Minnesota E C 2 H 88
Breton Minnesota E C 3 X i 88
Bromiley Minnesota MK F 2 H 90
Kapian Minnesota E < 3 1 86
Pricetaker SF1 EM C 2 X 1 88
Skeleton SF1 EM C 2 X 1 84
Truthteller SF1 EM C 1 . 1 84
Z1 SF1 EM P 1 X 1 82
Exp Arizona ESL E C 2 2 86
Free Arizona ESL E C 2 2 - 87
Gamer Arizena ESL E C . i 1 . 84
Max Arizona ESL E C X 2 2 X 157
Max-R Arizona ESL E C X 2 : 2 X 261
Slide Arizona ESL E C . 2 X 2 X 98
Terminator Arizona ESL E C 2 . 2 . 89
Boicer UC irvine Cs p . 2 - 2 . 86
Burchard Princeton 1AS M C X 5 X 2 X 94
Dallaway/Harvey Sussex s C X 3 g 1 X 01
Kennet/Friedman Fulane/UCSC E P X 2 g 2 X 181
Kindred Duke 8 C . 2 X { . 8%
Ledyard/Olsen Cal Tech E C X 3 X 2 - 187
Leinweber MJIT Advisors B C . 2 X i . 87
Lec British Columbia CS C . 2 X i . 88
Staecker Western Ontario €S C X 3 - 2 X 88
Utgofl Mussachusetts Cs C - 2 X 2 . 86
Wendrofl/Rose Los Alamos NL M F 3 . 2 . 88

F Field ~ B == broker, CS = computer science, E = economics, M = math, physics,

MK = marketing.
L Programming Language ~ C, F = Fortran, P = Pascal.
C: Complex - X if program is ‘complex’ as defined in section 3.1
A: Adaptive - Five-level ranking defined in section 3.2: I = least adaptive, 5 = most
adaptive.
5 Stochastic - X if program makes vse of random number generator.
P Predictive - Three-fevel ranking defined in section 3.4: 1 = doesn't predict, 2 = pre-

dicts market variables.
Q: Optimizing - X if program uses an cxplicit optimization principle.
CPU: Ratio of CPU time consumplion to average for all programs.

A Rusi er al., A computerized donble auction tournament 71

Table 2 summarizes our classifications for each of the trading programs
analyzed in this paper. Given that some of these features are somewhat difficuit
to define precisely, the remainder of this section provides a more detailed
discussion that justifies our classifications in table 2. We believe that this
taxonomy is the most useful way to comprehend the variety of strategies
submitted to the tournament.

3.1. Coniplexity

The issue of whether effective trading programs are ‘simple’ or ‘compiex’ is of
substantial importance to this analysis. The DA tournament can be viewed as an
automata game in which humans write computer programs to serve as their
‘agents’ to play the DA game. Theorists such as Abreu and Rubinstein (I988)
have modelled players of automata games as having two conflicting objectives:
they like the monetary rewards earned by their programs, but dislike complex-
ity. In the DA tournament it is evident that the more complex programs took
significantly more time to write and debug. In the absence of preferences for
computer programiming or complexity per se, we would expect entrants to write
the simplest computer program capable of implementing any given strategy.
Thus, the outcome of the automata game depends critically on the perceived
relationship between compiexity and payoff: Is it the case that extra effort
expended in developing a more complex trading program has a payoff in terms
of improved performance? The tournament results seem to indicate that the
answer to this question is no: two of the simplest programs turned out 1o take
first and second place in the tournament, beating the third-best program
- a ‘complex’ program — by a significant margin.

It is important at this point to carefully distinguish the concepts of trading
strategy and trading prograne. Tt is entirely possible that human traders may be
using complex strategies in ‘real time’ trading, but may be unable {0 encode that
strategy in a trading program. If humans have limited programming ability,
then it is quite possible that writing more complex trading programs could have
sharply diminishing or even negative returns. Thus, our results do not necessar-
ily prove that effective trading strategies are simple.

Well-known resuits from the computer science literature show that it is very
difficult to define an objective and unambiguous measure of program complex-
ity.'? There are many different measures of complexity, inciuding space com-
plexity (e.g., code length) and time complexity {e.g., cpu-runtime). The paradoxes
that result from taking particular complexity measures too seriously [e.g,

3 The abstract theory of compurarional complexity is not directly applicable here, because it refers
solely to the way computational requirements scale with problem size N, such as N* or expi{N). But
we have, in effect, fixed N,

72 J. Rust et al., 4 computerized double auction tournanient

Blum’s (1967) *Speedup Theorem’] are weli-known. But despite the paradoxes,
we think that it is extremely important to address the issue of complexity,
because models that account for time constraints, computation costs, and
‘bounded rationality” are likely to yield more realistic models of human trading
behavior.*®

In table 2 we classify a program as ‘simple’ if it is relatively short and uses
a small number of rules-of-thumb, whereas we classify a program as ‘complex’ i
it uses sophisticated mathematical operations and algorithms, or has lengthy
and detailed program code which involves the extensive use of information
variables or numerous multiply nested functions, structures, or procedure calls.
The strategy of Kaplan is classified as simple since it is relatively short (363
lines), and encodes a small number of rules that require only a few easily
computed aggregate market statistics.

An example of a complex program is the program of Mark Staecker, written
as part of a senior honors thesis at the University of Western Ontario. Not only
is the program among the longer trading programs received {1,378 lines), i is
also more complex in its use of auxiliary functions and data structures which
record numerous statistics on the trading behavior within the current round and
period. Much of the complexity is due to the fact that the program attempts to
predict the next high bid, low ask, and equilibrium price using general statistics
on past behavior. Then using these three predictions, it decides if a transaction is
likely to occur in the next BS step. If so, it tries to win the current bid or ask in
the next BA step by placing an ‘attractive’ bid or ask,

Table 2 also presents a time-based measure of complexity — the average cpu-
time consumed by the trading program. Almeost all the programs had very
similar cpu-consumption, mostly due to the overhead of bookkeeping and
communicating with the monitor than from calculating decisions. There is
a high correlation between the “time’ and ‘space’ measures of complexity;
according to either criterion there were only seven submitted programs that we
judged to be complex. Although the range of complexity was fairly wide, the
majority of participants used short, heuristic programs based on a few simple
decision rules.

Figs. 2 and 3 present block diagrams of the bidding strategies of the two top
programs, Kaplan and Ringuette.!” The rules for deciding when to place a bid

Yo For example, Abreu and Rubinstein {1988) modelled automata as Moeore machines, and defined

complexity as the number of states i the Moore machine. They showed that in a repeated two-player
autemata game, in any Nash equilibrium the players will submit programs of equal complexity: in
particular, we would never see coexistence of simple and complex programs in a Nash equilibrium of
their game.

1" We omitted disgrams of the ask routines since they are symmetric to the bid routines. We also
omitted diagrams of the buy/sell routines since they are both trivial: if the program holds the current
bid and can make a profit by accepting the current ask, then accept, clse reject.

J. Rust et al.. 4 computerized double auction 1ournament 73

i

PMRX, PMIN = highest and lowast transaction prices
from the previous period, or +wa, - if in the first period

w

Y Istherea \ N Bid =
current bid 7 MIHPRICE 4 1

istheraa
current ask 7

CHSH £ PMEX
and expected \ v

FOST = i profit> 2% and
minimum Of HOST = CASK-CBID
CALSK and next ioken — 1 + (< 0 f\c ASK 7)
next token - 1 N . Y
N
~
CAsK spuIn\Y
HOST > CBID Y Y n
, ?
N b4
N
w
w
Is time
Dot bid running out ?

A 4

o Bid = minimum
Don't bid of CASK and
MOST

Fig. 2. Block diagram of Kaplan's bidding strategy.

or ask are very similar. Kaplan's buyer program places a bid equal to the
previous current ask whenever the percentage gap between the current bid and
ask is less than 10% {of course, no bid is placed if trade 1sn't profitable at that
price). Ringuette’s entry rule is to wait until the first time when the current
bid exceeds the current offer less a ‘profit margin’. The profit margin is set equal
to one fifth of the variable span defined as the difference in price between the
most expensive token and the least expensive token (plus 10 to account for the
case when the player only has one token to trade}. Instead of placing a bid equal
to the previous current offer, Ringuette’s strategy randomly overbids by an
amount U =span/20, where U is a uniform random deviate.

Fig. 4 presents the block diagram of Skeleton’s bidding strategy (supplied to all
entrants) which Ringuette’s program calis as a subroutine {as can be seen in the
right branch of fig. 3). Ringuette’s version of the skeleton bidding routine is only

74 J. Rust er al., A4 computerized double auction tournanient

Is time running
N-fout, or hasitbeen | Y

a while singe [last
< fraded ? <
SPAN = first iokan - iast token + 10 tise Skeleton's
¥ bidding rule
{slightly modified)
-

CBiD <

NTIMES/M 7

Isthere s
current ask ?

Bid = CBID+1 I

CBID-CASK >
SPAI/S and
nexi loken >

CASK + SPANS 7

Bid = CASK +1 +
0.05+U[0,1]*s22n

Don't bid

Fig. 3. Block diagram of Ringuette's bidding strategy.

slightly modified from the sample code distributed to all DA participants: if
there is no current bid, the program bids the smaller of the current offer or the
least expensive token, less a profit margin equal to 30% of the span in value
between the most and least expensive tokens.!'® If there is a current bid, the
program bids a random weighted average of the current bid and the smaller of
the current token value and current offer price. This bidding rule puts more
weight on the current bid as the number of time periods decreases, starting out
at a weight uniformly distributed between 30 and 40% and ending with a weight
randomly distributed between 70 and 80%.'7

The basic idea behind the Kaplan and Ringuette programs can be sum-
marized in one line as: wait in the background and let others do the negotiating,
but when bid and ask get sufficiently close, jump in and “steal the deal’. We find it
rather striking that the two top programs are so similar despite the fact that they

¥ This is slightjy different than the original skeleton that subtracted a random percentage of span,
where the random percentige was uniformly distributed between 25 and 35%.

" This differs from the original skeleton where the weight was always uniformly distributed
between 25 and 35% regardiess of how many time steps are left in the game.

J. Rust et al., A compruerized double auciion tournament 75

I

[a=025+01up1; |

-

Y istherea \ N
current bid 7

Isthere a
cusrent ask ?

Is there a Y

[

curzent ask ?

HMOST = MOST =
minimum of MOST = mirgmum of MO3T =
CASK and next token - 1 CASK and last token - 1
next token - 1 last token - 1

MOST<CRID\ N Bid =

MOST - o (first oken ~ kast token }

Bid =

Don't bid (1-0){CBID+1) + @HOST

Fig. 4. Block diagram of Skeleroi's bidding strategy.

were independently developed, which is one confirmation of the robustness of
this approach. Although it is tempting to identify the Kaplan/Ringuette strategy
as the analog of Tit for Tat in Axelrod’s Prisoner’s Dilemma tournament, Rust,
Miller, and Palmer (1992} show that unlike Tir for Tat, there is a well-defined
sense in which this strategy is not collectively stable.

3.2, Adaprivity

Another important strategic aspect is the level of adaptivity of the various
programs, Is it the case that more adaptive programs perform better over a wide
class of environments than less adaptive programs? Our results indicate that the
answer to this question is also no: the adaptive programs were among the
poorest performers in the tournament.

Table 2 provides a summary classification of the adaptivity levels of the
programs submitted to the tournament. Most of the programs are relatively
nonadaptive. In general the adaptive programs were more complex than the
nonadaptive programs. In comparison to classilying programs as simple or

76 J. Rust et al., A computerized double auction tournament

complex, the adaptive versus nonadaptive classification is much more straight-
forward. However at the deepest level, there are some fundamental ambiguities
here as well. We would certainly want to classify human traders as adaptive to
the extent that they improve their trading performance after repeated plays of
the game.”® Thus, we might be tempted to define an adaptive strategy as one
which is modified in light of previous trading experience. However, an arbitrary
trading rule is just a mapping from the space of publicly observable trading
histories into a decision space:

Sy, Hy) = DiH,), 2

where [, represents the trader’s initial private information at the beginning of
the tournament, H, represents the publicly available history at time ¢, and D())
represents the set of feasible actions ({ accept/reject} in a BS step or the interval
fminprice, maxprice] in a BA step).?! The point is that at the most general level,
any trading rule can be represented in terms of (2). Viewed from this perspective,
it is then less obvious how define ‘adaptivity’, Since a strategy which is modified
in light of previous trading experience can always be rewritten as a fixed
function of histories as in (2}, in what sense is such a rule adaptive? This suggests
that we should classify the adaptivity of a strategy based on the length of history
it depends on, but clearly there will be a certain arbitrariness in where we draw
the line.

In the context of the DA game, it seems natural to classify a trading rule as
nonadaptive if it only depends on the immediate history, whereas an adaptive
trading rule wouid depend nontrivially on the entire history. However, because
people have imperfect memories, it would be difficult te argue that human
traders actually make use of the entire history. Thus, at some point we will face
a difficult decision of classifying a trading rule that falls in the grey area of not
depending on the entire history, but yet uses more than just the immediate
history. Given the (round, period, step) structure of our DA game, it is natural to
define five increasing levels of adaptivity;

1. Program only uses public information from the current step.
2. Program only uses public information from the current period.
3. Program only uses public information from the current round.

% Actaally, the extent to which humans modify their trading behavior in light of past experience
has never been formalty studied {to our knowledge). In joint work with Vernon Smith and Shawn
LaMaster at the University of Arizona, we are currently in the process of collecting long-time serjes
data on human trading behavior to better understand the learning process.

*Hf the trader’s strategy involves randomization, then f can be interpreted as a conditional
probability distribution over D{H,} . Note that the time index ¢ should actually be interpreted as
a vector index t = {(game, round, period, step). This distinction will be imporiant in our subsequesnt
definition of adaptivity.

J. Rust et al., A compurerized double auction 1ournament 77

4. Program only uses public information from the current game.
5. Program uses public information from current and previous games.

Level 1 programs are clearly nonadaptive. An exampie of a level | program is
Z1I which makes bid, ask, and buy/sell decisions based only on its current toeken
values without regard to any other information in the current period. Another
example of a level | program is the Gamer program which uses a fixed rule that
bids/asks 10% away from its token value and then accepts any profitable
counteroffer if it holds the current bid or ask. This is obviously a nonadaptive
program since it depends only on information from the current step of the game,
and its 10% behavioral parameter does not change as a result of experience from
game to game, or even within a game.

An example of an adaptive program is the Neural Net (NN} trader of
Dallaway and Harvey, a simplified version of which is illustrated in fig. 5. Their
program implements a recurrent neural network (Jordan network) with fourty
inputs derived from market information variables feeding twenty ‘*hidden’ units
and two output units {(one output provides a binary accept/reject decision in
a buy/sell step and the other determines the evel of the bid or ask in a BS step).
The net is recurrent in the sense that the outputs of the hidden layer - lagged by
one trading step — are also used as inputs to the hidden layer. Overall, the NN
program involves 1262 correction strength and bias parameters. For fixed
connection strengths, the NN program is actually only level 2 adaptive since the
net only uses input variables from the current period. However, Dallaway and
Harvey employed a genetic algorithm (GA) to evolve the connection strength
parameters based on the NN's performance over a series of DA games, Thus, the
combined NN-GA algorithm is level 5 adaptive since evolution of the NN
parameters implies that the program’s decisions are an implicit function of the
entire game history.*?

Another example of an adaptive trading program is the ‘cellular adaptive
curve-fitter’, submitted by mathematician Paul Burchard. The program uses an
adaptive curve fitter based on ‘cell division’ to predict the high bid and low ask
at the next step of the trading period. A cell is a recursive structure covering an
endogenously determined range of data (bid and asks) from which it predicts
future values using a pre-specified function of its observations such as minimum,
maximum, or average. A cell ‘divides’ (spawns a child cell) when the data it
contains are both too numerous and too ill-fitting, where the latter is determined

2*The GA is implemented by Gray-coding the 1,262 connection strengths into a binary string, the
‘DNA’ file. Muitiple copies of the NN program are allowed 1o play DA games, each associated with
their own DNA file. After a fixed set of games, each of the DNA files are replaced by the offspring of
two ‘parent’ DNA strings using crossover and mutation operators. Parents are selected with
probability proportional to their ‘fitness’, where fitness is defined as the average trading efficiency
over the games in the previous set,

T8 Jo Rust er al., A compuserized double auction tournament

Buy/Sell Bid/Ask
y 0) 2 Qutput
Linits

20 Hidden
Units

o8
N7

RS .
\\
7

y
///

d\\
Pt
R
5
S

Y .4!;\;?@
ST R
(,Qé’
N
o
A
:‘\af
L5y
D YR
i
LIPS,
A
27
}.Saazh

,:-l._.!\
-ﬂ!-t“

Xy Xp Xy rer Xy Mgy Xyg

20 Context inputs, copied from 40 Inpuls, derived from DA
hidden units at previous step public information varizbles

Fig. 5, Structure of the Dallaway-Hasvey neural net.

by a pre-specified statistical metric such as the mean absolute deviation between
predicted and actual bids and asks. We classily the program as adaptive because
it has the capability to save fitted curves in a file and reload them for use in
subsequent games. However, when this feature is turned off, the program is only
level 2 adaptive since the predictions of the curve-fitter only use observations on
bids and asks from the current trading period.

An example of a program with an intermediate level of adaptivity is the
Bayesian player of Friedman and Kennet, which treats the DA as a game against
nature {BGAN), updating the parameters of its Gaussian prior distribution as
trading progresses. The program is level 2 adaptive due to the fact that the prior
is updated using information only from the current period. However, since
token values are fixed across periods, information from previous periods is
clearly relevant for forming the posterior distribution. To the extent that the
program is modified to use information from previous periods, the program
would be classified as level 3 adaptive,

3.3. Use of information

One of the advantages of analyzing computer programs is that one can
identify the information they use, and perhaps equally important, one can also

Jo Rust et al., 4 computerized doulle auction tournanient 7%

identify information they ignore.”® Of particular interest is the gametype vari-
able that provides players with common knowledge about the distribution
F from which token values are drawn. Only ten programs made use of the prior
information provided by the gamerype variable, and six of these entries were
subrnitted from the Arizona Economic Science Lab. However, it appears that
using this information did not confer a great advantage on the trading foor,
since only three of these programs made it above the 50th percentile in trading
performance.®* Only three programs made use of prior information about the
number of periods and rounds in the game, reflecting the fact that by and large
rone of the programs attempted to learn and exploit particular features of their
opponents (which might be possible in games where the number of periods or
rounds are very large). A total of twenty programs made use of prior informa-
tion about the number of buyers and sellers they would be facing. Some
programs, such as Staecker and Ledyard-Olson, used these variables to branch
to ‘monopoly subroutines’ when they were the sole seller or buyer. Although one
would have expected that knowledge of the number of buyers and sellers would
be a key to good performance in the tournament, the top programs ignored this
information while the programs that used it were among the worst performers in
the tournament.*

Nearly all programs used the basic game parameters such as the number of
time steps in each trading period and the total number of tokens: these variables
were used together with information on the current elapsed time and the
number of trades made so far to determine the amount of remaining time and
tokens. Only three programs failed to use this information: Truthteller, Z1, and
Wendrofi-Rose. A few programs such as our Skeleton and the program by
Leinweber kept track of elapsed time but didn’t make use of the totai number of
time steps in the period: instead these programs used a variable which records
the time step at which the last trade was made. Only two programs, Kaplan and
Daliaway~Harvey, made use of a variable which records the time step at which
they made their last transactions. The prevalent use of information about timing
suggests that it is crucial for successful performance in the tournament: the worst
programs were either too impatient and traded early in the period, or they kept
poor track of time and failed to execute ali potentially profitable deals by theend
of the period.

As for the other public information variables, only the current bid and ask
were used by all the programs. Together with traders’ private information on
their token values, these three public information variables represent a minimal

*3 1t is a much more complicated matter to try to characterize which of the variables that the
various programs use are in some sense ‘most important’ in their decision-making.
2 p

2*The exceptions were the programs of Anos-1, Burchard. and Ledyard-Oison.

*5The exceptions are the programs Golden Buffalo and Silver Buffulo. and the programs by
Anderson, Burchard, Ledyard-Olson. Perry. and Staccker.

80 J. Rust et al., 4 computerized double auction tournament

information set in the sense that all three are required in order to avoid trading
at a loss when playing the role of buyer or seller. Relatively few programs kept
track of the identities and individual histories of bids and ask of their opponents.
This refliects the fact that none of the programs attempted to predict the
individual strategic responses of their opponents. In general, the programs we
judged to be complex were also the ones that made the most extensive use of the
public information variables. Only the programs of Ledyard-Olson and
Staecker made some use of the majority of the information available to them.
Surprisingly, fourteen programs didn’t even keep track of previous transaction
prices. The fact that some programs, such as Ringuette, performed very success-
fully without using this information seems to confirm Friederik Hayek's (1943)
conjecture about the ‘remarkable economy of information need to take the right
action in a competitive market’. Indeed, it is quite striking that the best
programs required very limited information to do well. In sumemary, we find that
in addition to traders’ private information about their token valuations, the key
public information variables used by the trading programs are;

Current elapsed time
Current bid
Current ask

3.4. Use of statistical predictions, optinization, and randemization

A third feature of trading programs that is closely related but distinct from
complexity and adaptivity might be called predictivity, This measures the extent
to which a trading program bases its decisions on predictions of future bids,
asks, and transaction prices. Table 2 categorizes programs into one of three
increasing levels of predictivity:

I. Program makes no explicit attempt to predict any future quantities,

2. Program explicitly predicts future values of certain aggregate market
statistics,

3. Program explicitly predicts future behavior of its individual opponents.

We can see from table 2 that none of the programs attempt to forecast
individual decisions of their opponents. Only a few programs [all in the intermedi-
ate category of attempting to make aggregate market predictions. Examples in
this category are Burchard’s adaptive cellular curve-fitter, which attempts to
predict the current bid and ask at the next time step and whether a transaction
will occur, and Staecker’s program, which predicts next current bid, current ask,
and competitive equilibrium price. Ledyard's program provides an example where
interval rather than point prediction is used. This program makes a prediction

J. Rust et al., A computerized double auction tournanent 81

of prices p; and p, forming the lower and upper support points where transaction
prices are expected to occur in the next BS step. The program updates these
predictions based on observations of bids, asks, and realized transactions prices.
The majority of the programs did not attempt to predict any {uture quantities,
basing their decision rules entirely on past trading outcomes.

Of course, there are a number of cases where the distinction gets rather
cloudy. An example is Perry’s ‘statistical player’. This program makes implicit
predictions of future transaction prices by computing a running average of
transaction prices {and the associated standard deviations) from the current and
previous periods. The statistical player begins by bidding about 2 standard
deviations below its estimate of the average price at the beginning of the period,
gradually increasing its bids as time in the current period runs out, so that by the
end of the period it bids as much as 0.2 standard deviations over iis estimate of
the average price. Although this program does not make explicit predictions of
the next market transaction price, it is clearly treating its current estimate of the
average price as its prediction of the market equilibrium price. In general,
programs that employ ‘adaptive expectations’ forecasting procedures (a term to
be distinguished {rom the concept of ‘adaptive behavior’ defined above) will
form their expectations as a function of lagged observations of various pubiic
information variables. In such cases it can be unclear whether trading rules that
base their decisions on fixed functions of lagged public variables are nonpredic-
tive, or are predictive but using an implicit forecasting rule based on adaptive
expectations principles,

We define a stochastic strategy as one that relies at some point on an internal
randomizing device (such as a vniform random number generator} in order to
make a decision. An example of such a program is Breton's entry, which adds
a random error term uniformly distributed on the interval [— 2, 2] to a target
price defined for a buyer as a weighted average of the current bid and the current
token redemption value. Overall about half of the entrants included some sort of
stochastic device in their strategies. The primary use of randomization is to add
noise to the bid or ask functions to prevent the program from being ‘recognized’
and systematically beaten by others. For example,when Kaplan’s nonstochastic
program places a bid, it does so at an amount equal to the last current ask. If
other programs were able to recognize that they were playing apainst a Kaplan
program, they could easily pre-empt it by bidding just one unit more than the
last current ask. In contrast, Ringuette’s program uses random overbidding of
the last current ask to prevent this kind of pre-emption. The fact that Kaplan’s
program does better than Ringuette's suggests that its potential exploitability
due to its failure to randomize was not an important factor; instead, Ringuetie’s
program seems to have lost more profil by overbidding than it gained by
pre-empting others for the right to hold the current bid.

Finally, we define an optimizing strategy as one that uses an explicit or implicit
optimization principle to guide its behavior. An example is the program Max,

82 J. Rust et al., 4 computerized double auction tournament

which chooses a bid or ask to maximize its expected utility using the cumuiative
distribution function of bids and asks to calculate the probability that a sel-
ler/buyer will accept the program’s bid/offer. An example of a nonoptimizing
program is ZI, which randomly bids below its current token value at each BA
step. As in the previous cases, the optimizing/nonoptimizing distinction may not
always be clear. At a basic level all of the trading programs are presumably using
an ‘optimization principle’, namely: maximize trading profits. However, this is
not a sufficient basis to classify all programs as optimizing. Our distinction
hinges on whether or not the program uses a more or less formal mathematical
procedure to optimize 2 well-defined objective function as a fundamental part of
its decision-making. Most of the programs that we have classified as non-
optimizing are based on simple ad hoc rules-of-thumb, or other heuristics that
are clearly not attempting any sort of formal optimization. The programs that
we classified as optimizing were designed to solve more or less explicit optimiza-
tion problems, such as the Friedman~Kennet program that solves a Bayesian
control problem, treating the responses of the other traders as ‘nature’. The one
exception was the NN program of Dallaway and Harvey. For fixed connection
strengths, their program is just a fixed decision rule that does not use any
explicit optimization principle. However, their GA algorithm that modifies the
connection strengths does use an implicit optimization rule, namely, to evolve
the DNA strings that encode the connection strengths to maximize the
program’s long-run trading efficiency.

In conclusion, based on the categorizations defined in this section and the
tournament results to be presented in the next section, it appears that the
best-performing program in the DA tournament can be characterized as follows:

Simple
Nonadaptive
Nonpredictive
Nonstochastic
Nonoptimizing

4. DA tournament results

Table 3 presents the rankings of dollar payoffs made to eligible trading
programs in the March 1990 tournament, broken down by environment,*®
Average dollar payouts were §309 per entry. The top program, Kapian, earned
a total of $408, 514 higher than the second-place program of Ringuette. The

20The NN program of Dallaway and Harvey was disquatified from the March 1990 tournament
because it consistently incurred large losses. The authors submitted a revised version for the
subsequent scientific tournament which performed much more satisfactorily.

J. Rust et al., 4 computerized double auction tournament 83

gaps separating third, fourth, and fifth place were $7.45, $10.51, and $8.63,
respectively. While these differences in earnings may not seem economically
significant, the average standard deviation in dollar earnings shows that the
differences are statistically very significant. Kaplan's earnings are over 2.3
standard deviations higher than Ringuette’s second-place earnings, and the gaps
separating first from second, third, and fourth places are 3.8, 5.6, and 7.1
standard deviations, respectively, The average standard deviation in profits of
$5.75 was only slightly higher than the $5.40 standard deviation in surplus
allocations calculated over each player’s 3,360 individual periods of play in the
ten environments. Note that our procedure for generating tournament games
guaranteed that the token endowments of all traders are identical with probabil-
ity 1. Given the large number of periods of play, an appeal to the law of large
numbers allows us to be very confident that differences in traders’ earnings
reflect true differences in profitability rather than randomness due to player
matchings and stochastic elements in the programs themselves.”’

The bottom rows of table 3 present the Spearman rank correlations between
the overail tournament payoffs and the payoffs in each of the ten environments.
In addition, we computed Kendall's Hstatistic which measures the degree of
concordance in all the rankings. The fact that these statistics are so high shows
that trader rankings are fairly robust to the choice of environmental parameters.
Indeed, it is quite striking that Kaplan's program took first place in seven out of
ten environments, coming in second place in environment EQL and third place
in environment SHRT. The only place where Kaplan's program did not do weil
was the environment TOK where traders were endowed with only a single
token. At the bottom end of the spectrum, the BGAN (Bayesian game against
nature) program of Friedman and Kennet was consistently one of the worst
performers in all ten environments. With earnings of $164.30, BGAN is over 10
standard deviations below the earnings of the next highest competitor.”®

While we are very confident of our ability to distinguish the best and worst
programs, we are much less confident about the relative rankings of the middle
group of programs. After the large gap separating the fourth- and fifth-place
entries (Anon-2 and Ledyard-Olson), the differences in payoffs of the next group

*7Rust, Miller, and Palmer (1992) demonstrate that Kaplan and Ringuette remain the top-
two-ranked programs in variations of the DA tournzament which eliminate the worst-ranked traders,
and in ‘revolutionary tournaments’ where the relative fractions of each type of trading program
evolve endogenously based on their historical profitability.

BGAN may have suffered as a result of problems converling the program from PC Turbo
Pascal to Sun Pascal. Although the converted program compiles without error, its numerical
integration routines generate under- and overflow crrors i runtime, suggesting a possible incom-
patibility in its calls to certain functions, The low ranking of the program of Boicer should be
disregarded since the program was only programmed to play the role of seifer. In terms of doilar
payolls per game played, Bolcer's program is about equivalent in performance to the programs Max
and Terminator which placed 19th and 20th ks overail carnings.

84 J. Rust et al., A computerized double auction tournament

Tabie 3
Program rankings in the March 1990 double auction tosrnament.®

Trading Over- BASE BBBS BSSS LAD EQL PER RAN SHRT SML TOK
program all

Kaplan 1 | 1 I 2 1 i l 3 i 14
Ringuette 2 3 6 3 ! 3 3 6 13 3 2
Staecker 3 2 4 7 3 i0 2 10 6 203
Anon-2 4 17 8 4 4 2 13 13 i 6 1
Ledyard-

Olson 5 10 3 8 1 8 & It 7 4 4
Perry [13 2 9 3 1t 16 3 9 8§ &
Breton 7 7 13 [¢ & 11 7 il 3 3
Anderson 8 15 3 3 i4 7 21 g 2 1 8
Anon-1 9 4 7 11 8 14 4 12 5 9 16
Burchard 10 8 10 13 i3 16 9 2 4 11 1%
Terminator il 6 2 2 g 18 8 14 iB 14 @
Golden Buffalo 2 9 9 10 it 13 18 5 12 17 i3
Lee i3 16 14 20 i2 i3 12 4 8 72
Leinweber i4 it 13 13 6 9 14 8 1¢ 12 23
Silver Buflalo i5 14 19 i8 16 4 3 15 14 21 10
Slide i6 3 12 £7 13 20 7 17 15 I3 18
Jacobson 17 12 20 id 19 3 Y 16 16 6 7
Bromiley i8 18 18 i2 21 19 1¢ 18 17 20 17
Max i9 20 6 i6 22 23 17 4 26 i5 13
Max-R 0 22 It 24 20 2 el 21 23 i9 11
Uhgoft 21 19 22 22 18 12 13 3 21 i 23
Kindred 22 21 23 i5 17 17 19 19 1% 2029
Free 23 23 i7 26 27 24 15 20 20 24 28
Gamer 24 24 24 23 25 26 23 26 24 25 26
Wendroff a5 25 25 27 24 27 4 2 22 2722
Lin 26 26 26 23 28 25 28 25 23 6 20
Exp 27 a8 a8 24 23 23 26 2% 28 23 12
Kennet 28 oy 29 28 26 29 n 27 27 28
Bolcer 29 29 7 29 pAY 28 % 28 29 29
Rank

correlation 160 37 89 91 O 84 81 87 89 95 72

*Average rank correlatiom 77,
Kendall's W-statistic: 7%,
Marginal significance fevel: 3x 1073

of programs are within 1 standard deviation of each other. The next significant
difference in payoffs is a $10 gap separating the 9th place entry of Anon-1 from
the 10th place entry of Burchard. Even after 3,360 periods, it is clear that we
would need many more observations to be confident of the relative rankings of
programs between 5th and 9th place. In general, it is impossible to make any
reliable performance distinctions if one is only able to observe traders over
a small number of periods. The average dollar earnings of 9.4 cents per period of
play is dominated by the per period standard deviation in profits of 10.0 cents.
Most of the latter variation is attributable to the 9.2 cent standard deviation in

J. Rust et al., A4 computerized double auction tournament 85

surplus arising from traders’ random token endowments. Thus, a computerized
trading environment is virtually a necessity if one wants to reliabiy discriminate
good traders from bad. It appears that it would be infeasible to make the same
sorts of distinctions in markets with human traders given that it takes hundreds
or even thousands of periods play before one can be sure that differences in
relative performance are statistically significant.

4.1. Analysis of Kaplan and Ringuette

As noted in the previous section, the first- and second-place programs are
remarkably similar, both employing the strategy of ‘waiting in the background
and let the others do the bidding’. Indeed, figs. 6 and 7 show that the behavior of
the two programs is also remarkably similar. The figures present the distribu-
tions of four quantities: profit, surplus, efficiency, and trade ratio.?® For com-
parison, the dotted lines present the corresponding distributions for all traders.
Note that the distribution of surplus is {by construction) the same for all traders:
the other distributions refiect differences in relative trading ability. The distribu-
tions for Kaplan and Ringuette are nearly identical: the main differences are that
Ringuette’s program sometimes trades at a loss, and succeeds in trading fewer of
its profitable tokens, resulting in a mean trade ratio of 99% of its profitable
tokens compared to 111% for Kaplan. The efficiency distributions reveal that
Kaplan and Ringuette obtain significantly higher efficiency levels than the other
traders, primarily by avoiding low profit margins.>® Notice that the spike at 0%
efficiency is approximately 6.5% for Kaplan and Ringuette as opposed to nearly
12% for the other traders. By comparing the spikes at 0 in the distributions of
profits and surpius, we see that aithough Kaplan and Ringuette are given zero
endowments about 3% of the time, they come away with zero profits only
about 15% of the time as compared to well over 20% for the other traders.

Given the overall similarity in their programs, which factors account for the
superior performance of Kaplan's program? We believe the difference can be
ascribed to two factors: 1) Ringuette uses a more aggressive rule to trigger when
to place a bid or ask, and 2) when Kaplan makes a bid, he does so at the previous

*9 Efficiency is defined as the ratio of profits to surplus, where the latter is computed under
the assumption that all transactions occur at the midpoint of the CE price interval, The trade
ratio is defined as the ratio of the number of actual number of trades to the number predicted
under CE,

39The significant difference in mean efficiency between the two programs is sensitive to outliers
that oceur when CE profits are very small. The figures truncate the efficiency data at [10,000%
and separately tabulate the number of + oo and — 5o cases where CE profits are 0 and realized
profits are positive and negative, respectively (cases where realized and CE profits are both 0 are
asstgned efficiencies and trade ratios of 100%). A better measure of overall trading efficiency is the
ratio of total profits 1o total surphss, which is 119% and 110% for Kaplan and Ringuelte,
respectively.

86 J. Rust et al., A computerized double auction tournament

L B e e B o R 0.2 e e e T T T
ALL 4 - ALL :
min =3182 | L min 0 E
3 max 5798 | { mox 2758
mecn 224 mean 248
8.3 atd 362 .15 sd 340
3 nobs 97440 3 Aebs 97440 7
[» b
o o
g0 1§ |
z 0.1 - g 0.1 p -
& 3 KAPLAN & 3 HAPLAM
= min & & 3 min O
max 3037 Jd 3 megx 274t
E mean 295 i 3 mean 248
ald 454 std 344
.08 1 L e nebs 3360
P PP TR SRR B o 2ot 6 OISR SO s O et ety |
—200 0 200 400 800 {00 200 a 200 400 &850 800
Protlts Surpius
0.2 T T T T ae T T T { T
L 2L i I AL 1
min ~—3%299 | min 8 3
mpx 8953 | r mox 400 4
mesh 122 | 08 mean 97 o
std 377 - std 44
nobs 96588 r nobs 96552 -
+m 778) L +o BBB p
z IS O T |
£ |8
S T OB 0.4 - —_— ~
8 HAPLAN ® L KAPLAN
B min O J o min
max 8338 i mex 400
menn 171 | L mean 111 L
atd 51t B az std 37
nobs 3319 . nobs 331G
o A1 ¥ F t= &3 1
I SR AT, '
; U B o i i N AN . A :
- 100 a 100 200 300 406 500 Y] 100 Al 00
Efficioncy Trade Ratio

Fig. 6. Payofl distributions for Kaplan.

ask price, whereas Ringuette randomly overbids the previous ask.?! [t is not yet
clear which of these features is most responsible for Ringuette’s second-place
showing. However, it does point out the general lesson that is applicable to all
programs, namely, mistakes in bidding are the principal sowrce of poor wrading
performance. Kaplan's more conservative bidding behavior results in a per
period profit of 295 (in token units), that is 22 units higher than Ringuetie’s
profit of 273. The only other major difference in the behavior of the two
programs shows up in the single-token environment TOK, in which Ringuette’s

¥ Kaplan’s program is also slightly more adapiive than Ringuette's, using information on
minimum and maxknum transaction prices from the previous period to help it recognize ‘good
deals’, whereps Ringuettes only uses information from the current pericd.

J. Rust et al., A computerized double auction tournanmens 87

0.2 T T T T 6.2 e S s ey B e e e e S
L ; AL . L AL |
L min «~3152 E min O A
L max 5793 | 3 max 2756 |
trgon 224 magn 249
A8 e A T se 149
[nobs 97440 |] nobs 47440 |
& 1 ¥ r]
i o0 § .l 1
EA 01 4 2 0.4 - -
© t RINGUETTE 4 ®© RINGUETTE E
[L min -2 J & min 0O 3
L max 4124 | R max 2711 N
L, mean 273 E L mean 248 |
oid 402 atd 344 |
005 1= nobs 33680 7 0.05 - nobs 3280 |
0--,Jt;.111.,|t'.';-1-- e P I [P RN A N o,
-200 o 200 400 606G 840 ~200 o 200 460 600 800
Profits Surplus
6.2 T T T 08 ¥ T Y T ¥
L AL | 1 AL 1
L min ~31289 | " min 0 N
max 9989 i h mox 400 R
mean 122 meon 97
0.55 sd 377] o8- std a4
pobs 96588 | r nobs 66552
4w 778 1 L +m 888 i
B e T4 T
E=) o
8 l 1 8
g otr- -1 a3 4 —
g L RINGUETTE 4 & RINGUETTE
[~ L min ~83 1 & min O
L max 9867 i max 330 b
L meon 137 | L mean §9 4
L sid 255 A { sid 38 n
£.05 nobs 3343 82 nobs 3343
) e 13 i " e 17 1
- 4 - P A
L - - 1y . A
o . P S T e L PEs AI’\/\ i /’\/\ A .
=100 o 100 200 300 400 500 o 100 200 300
Efficiency Trade Ratlo

Fig. 7. Payoff distributions for Ringuette.

program takes 2nd place in comparison to a 1dth place showing for Kaplan.
Although Ringuette’s program tends to trade its token less frequently than
Kaplan, 84% versus 94%, when it does trade, it succeeds In trading it for
a significantly higher price resulting in a trading efficiency ratio of 130%
compared to 94% for Kaplan. We are not sure, however, of the precise features
of Kaplan's program that cause it to do worse in the single-token environ-
ment.

Despite the fact that the increment in Kaplan’s per period profits appears to
be statistically insignificantly higher than Ringuette’s when averaged over all
environments, Kaplan's superiority is consistently revealed after a sufficiently
large number of periods of play. This difference shows up even more clearly in
the long-run or ‘evolutionary’ tournament described in Rust, Miller, and Palmer
{1992},

88 J. Rust et al., A computerized double auction reurnament

Transoction Summary monop079
B1 pricelok B2 breton B3 anoni 84 gkal
51 sloecker

Ple— — & T T T : T T ; T T T T T : 7 T Period
P2 - - ™ 3

P3 olB2+ ps I8 B2S1
Ci —100 Q2 Bir B B2+ pus 37 BOS
cz -100 ¥ | 56 B2IS)
C3 -100 75 B1351
£1 300

2 100 B 3
£3 100 w0
1 75 EM O
2 7%

T3 75
51 99
B2 99
B3 99
1100
52 100
S3 100
At
Az
AL
MY
M2
M3

COoOO0

L i L L : ' ' 3 1 L 1 : L

O 1 2 3 4 3 & 7 B8 8 10 11 12 13 14 15 18
gel 4, 4] p'el676,678]

Surplus
B35

400 440 480 520 5B0O BO0O B4G

Fig. 8. Staecker as monopolist.

4.2, Analysis of Sraecker

The third-place program of Staecker represents an interesting contrast to the
first- and second-place programs of Kaplan and Ringuette: we classify
Staecker’s program as complex, optimizing, predictive, and adaptive. Actually,
Staecker’s program is level 3 adaptive according to the classification of section
4 since it only uses information from within the current round. Staecker's
program was alse one of the few programs to include a ‘monopoly branch’ that
attempted to exploit monopoly power by ‘walking down the demand curve’ in
cases where it is the only seller. Fig. 8 illustrates the effectiveness of this
approach in a game in which Staecker piays the role of monopoly seller. The
price trajectories for each succeeding period of play overlap each other, showing
that Staecker’s program was able to obtain the first-best outcome of 100%
extraction of the available surplus. For comparison, fig. 9 shows the outcome of
a game with a less successful monopolist, Leinweber. The values of T1, T2, and
T3 on the left side of each figure indicate the step at which the last transaction
occurred in each period. When Staecker is a monopolist, the last transaction
occurs in the very last period, whereas in Leinweber’s case, the last transaction
occuss less than halfway through each trading period. This provides a stark
illustration of the problems caused by excessive impatience. The values of B1,

J. Rust et al., A compuwterized double auction tournament 89

Transaction Summary monop013
B perry 82 onon2 B3 kapion B4 sloecker
S leinwebe
Pl— — —_—
PR-=--
P3
C1 100
c2 -100
C3 -100
1 9
£2 9
E3 89
T 22
T2 13
73 13
g1 B
82 42
83 28
S1 100
52 100
53100
AT 14
A2 10
A3 7
M1 23
MZ 14
M3 8

T T T T T T T T T T T Period
3
2 RS
4 B25)
7 B2S51
15 8351

BS 83
S5 0
M0

EM O

726 760 B0OO 840 B8O 920

i : : : I : L .

3 4 3 & 7 B 9 10 i1 12 13 14 15 18
g'el 4, 4] pTelB20,878]

Surpius
776

600 640 680

Fig. 9. Leinweber as monopolist.

B2, and B3 indicate the rank correlation coefficients of the order at which buyers
transacted with the ‘efficient order’, ie., the order of tokens along the demand
curve. We can see that in Staecker’s case, these correlations are 99%, indicating
that he succeeded in ‘walking down the demand curve’ to extract virtuaily all
surplus.®*? In Leinweber's case, these correlations are well under 50%. For
example, in period 3 we can see that by failing to exercise his monopoly power,
Leinweber created a situation where an extramarginal trade by B2 (Anon-2) was
able to displace a much more potentially profitable trade by buyer Bl (note that
the * + ’ signs denote which players made trades).

When there are other competitors on its side of the market, Staecker’s
program follows a passive bidding strategy until it predicts that a trade is iikely
to occur, in which case it attempts to ‘steal the deal’ by bidding one unit less than
the winning offer it expects in the next BA step. This is basically similar to the
strategy followed by Kaplan and Ringuette (K&R) except for three main
differences: 1) K&R stay in the background by either not bidding or bidding the
minimum alowable price, whereas Staecker adopts a slightly more activist

32 Notice from the right hand of fig. 8 that three units of potentia} profits were lost due to the fact
that Bi succeeded in bumping B3 in last BS step.

90 Jo Rust et al., A computerized double auction wonrnament

Table 4

Perlormunce comparison of Kaplan and Staecker.

Case ALl BASE BBBS BSSS LAD EQL PER RAN SHRT SML TOK

Trade rurio

Kaplan P Hin 11t 109 136 114 113 103 104 113 94

Staecker 103 106 a8 101 128 109 104 96 90 107 84

Ratio 108 HU! 113 108 106 105 11t 107 16 106 12
Efficiency

Kaplan 119 120 121 114 [22 119 125 108 12t 120 95

Staecker 106 117 It 145 £22 102 1t6 101 109 00 121

Ratio 12 103 109 108 106 11 [08 o 114 120 79

bidding strategy by bidding the current ask less 5; 2) K&R’s programs trigger
a bid whenever the spread between current bid and ask [rom the previeus BA
step is sufficiently small, whereas Staecker’s program triggers a bid whenever the
spread between its prediction of current bid and ask on the next BA step is
sufficiently small; and 3) K&R’s programs attempt to ‘steal the deal’ by bidding
an amount equal to the previous current ask (plus a random premium in the
case of Ringuette), whereas Staecker’s program bids an amount egual to one
unit less than its prediction of current ask in the next BA step. Staecker's bidding
strategy should involve less overbidding in comparison to K&R since the latter
strategy is based entirely on the value of current ask from the preceding BA step,
which will typically be displaced by a better ask in the succeeding BA step.
However, if Staecker's program makes poor predictions of the next value for
current ask, it could end up underbidding and losing the opportunity to trade.
Indeed, comparing the mean trade ratios in table 4, we see that Staecker
consistently trades fewer tokens than Kaplan. This seems to indicate that the
main reason why Kaplan’s program is a more efficient trader than Staecker’s is
that it is more successful in executing its trades.>® Apparently the premium that
Kaplan pays to obtain the current bid is offset by increased execution rates
resulting in higher overall efficiency.

4.3, Analvsis of Gamer and Max

The Gamer program, which ranked 24th in overall payoffs, shows that not all
simpie, nonoptimizing, nonadaptive, and nonpredictive programs succeeded in

3The main exception is the envirenment TOK, where Kaplan's program appears 1o do poorly
despite the faet that it succeeds in trading its profitable tokens 94% of the time compared to 84% for
Staccker. In this case Staecker's program behaves similar to Ringuette’s in earning significantly
higher profits when it does trade.

S Rust et al., A computerized double auction tourncment ot
4

L A ML B 2 o o o oy o S At L A T i
4 ALL i ALl
4 min ~3192 | min 0
3 max 5733 | mox 2756
rmetn 224 mean 249
015 T s L o s 349
nobs 97440 T 3 nobs 87440
E 1® 1
g 1§ 1
2 01 - 2 Q.1 _ —
& GAMER g L GAMER J
i 1 min ¢ & | min 0 i
L mex 2770 | max 2711 J
| mean 160 3 N mean 243 A
atd 261 std 348
005 - mobs 3380 | OO nobs 3360
i NPT T o S rrmssiad o Lol bretormrle Lo Lo, .
200 0 200 400 aoo 800 200 0 200 400 800 800
Protits Surplus
13-4 T T [Ty 0.6 T T T T
L AL] i AL
L min ~3125% I min 0
L magx 9999 i L max 400 4
mean 122 mean 97
£.15 - s 3797] 0.6 - d 44
3 ; acbs 95588] - nobs 96552 4
r H b 778] | 4m BB
B » T4 N b
) o i 4
ol 13
g, 0.t - -+ 2 G4+~ -~
° b GAMER B 0 GAMER
M . L ' . 1
£ min O 4 B min 0
L max 95993 N: r mox 300
meon 84 i o mean &7 B
sid 243 std 40
045 nobs 3353] b2 nobs 3348
= 7 l - Fa 12
— 0 b
0 T TP T e PP] 0\ /\A/.\/\ FATA) A :
- 100] 180 200 300 460 500 0 100 200 00
Efficiency Trade Ratlo

Fig. 10. Payoff distributions for Gamrer,

deing well in the tournament. Gamer always bids an amount equal to 0%
below its token value, and accepts any offer that yields a profit. This strategy
is similar to the ZI and Truthteller strategies, and ali three strategies performed
about equally poorly. Fig. 10 summarizes the behavior of Gamer in the ten
tournament environments. Gamer's average profits of 160 are only about 64%
ol its mean token endowment of 249. The efficiency distribution shows that
Gamer earns zero profits in well over 20% of all trading periods, even though
its surplus endowment was zero in only 13% of ali trading periods. The
efficiency distribution is shilted to the left, reflecting the fact that Gamer typically
settled for significantly less than [00% of its potential profits in the times
it did trade. However, the distribution of trade ratios also shows that Gamer

92 J. Rust et al., A computerized double auction rournament

0.2 oy T 0.2 et T T
: ALL - L ALL 4
L min =3192 L min © J
max 5788 | 1 max 2756 |
[megn 224 mean 249 _
015 std 362] 818 sta 349
3 nobs 97440 1 [nohs 87440
B 18
bl °
2 01 -~ 2 Gl — -
) HAX N L MAX
o min © 1 & min O 4
L mgx 2911 max 2711
N mean 198 3 mean 249
atd 31 sd 350
0.05 - nobs 3360 | Cos - nohs 3380
o N TRESU SUIE Shiuh] o L TR A R AN
-200 0 200 400 800 ans -208 800 BOD
Profits
02 T 7T 2.4 ¥ T T 3
r min —312589 | r min 0O
K max 9999 | L max 400
meon 122 s mean §7 N
o161~ ad 377) es : sl 44
[nobs 96588 - . nobs 86552
I 4o 778 T L +m 888 i
M —= 74 T
g 1F o]
2 01i —_— 4 5 o4k _— B
g MAX 1 € MAX
& min ¢ a4 R min O
o max §89% 3 max 300
mean 1320 J 2 mean 77
st 458 sd 46
2.05 - nabs 3350 | 0z nobs 3330
F b 1O 1 = 1D
- - 0 4
o . " . : A o ALY R IaTAY AT X
—100 9 19C 200 aoo 400 S00 0 160 200 30o
Efficiency Trade Retic

Fig. 11. Payell distribwtions for Max,

systematically missed out on trading opportunities, trading only 86% of its
profitable tokens compared to 97% for the market as a whole. The fact that it
traded fewer tokens is probably due to the fact that its 10% underbidding
parameter was hardcoded into the program, and not subject to change even if
there were potentially profitable offers in the final steps of the period. This
creates an inefficiency wedge that locked Gamer out of some potentially profit-
able deals.

The Max program provides an example of a complex, optimizing, predictive,
and nonadaptive program that also performed poorly. Max uses the cumulative
distribution of bids and asks, G, to calculate the probability that the seller will
accept a bid. It is also one of the few programs to make use of the prior
information about the token distribution F provided by the gametype variable.

J. Rust et al., A computerized double auction rournamient 93

Given its current estimate of the distribution of bids and offers G, it appears that
the intention of Max’s programiners was to choose an ‘optimal bid’, namely one
that maximizes expected profits computed with respect to its current estimate of
G. However, the implementation of this idea in the actual computer code is
somewhat different. The optimal bid, B*, is chosen as the solution to:

(3)

B* = min{blb <Tand (T—p 3B —66-1 1},

G{b)

where T denotes the program's highest-valued untraded token. Rather than
maximizing expected profits, this code seems to be choosing the smallest bid
such that conditional expected profits exceeds 1. We would expect such code to
lead 1o significant underbidding. Indeed, the distribution of trade ratios in fig. 11
shows that Max trades only 75% of its tokens each period, and that Max gets
locked out of a trading period without making any trades aimost 20% of the
time. The distribution of efficiencies indicates that, when it does succeed in
trading, Max is able to get its fair share of the profits. However, the large spike at
0% efficiency indicates that the primary problem is systematic underbidding
causing Max to get locked out of the period without having made any trades
at all.

5. Conclusions

This paper illustrates the potential value of computers as a tool for studying
trading strategies in DA markets. We have analyzed a collection of over thirty
computer programs ranging in complexity from simple rules-of-thumb to soph-
isticated adaptive/learning procedures employing some of the latest ideas from
the literature on artificial intelligence and cognitive science. In order to evaluate
the programs, we conducted an extenmsive series of computer tournaments
involving thousands of individual DA games, covering a wide range of trading
environments and compositions of trading partners. A single program emerged
as the clear winner in nearly all of the tournaments and trading environments
considered. The winning program, submitted by economist Todd Kaplan of the
University of Minnesota, was one of the simplest programs that we studied,
and can be characterized as nonadaptive, nonpredictive, nonstochastic, and non-
optimizing. The basic idea behind the program is to wait in the background to let
others do the negotiating, but when bid and ask get sufficiently close, jump in and
‘steal the deal’. The program makes no use of prior information about the joint
distribution of token values, and relies on only a few key variables such as its
privately assigned token values, the current bid and ask, its number of remaining
tokens, and the time remaining in the current period. The fact that one can

94 J. Rust et al., A computerized double auction rournament

design an effective trading program relying on only a few sufficient statistics
seems to confirm Hayek’s observation about ‘the remarkable economy of
knowledge that is required in order to take the right action in a competitive
market’.

It appears that the success of Kaplan’s strategy is due to the fact that if the
current bid and ask are close, then it is likely to be the case that either 1) bid and
ask are close to the equilibrium price interval, or 2) the current bid or ask are
close due a mistake in which either the current bid or ask was made at an
unfavorable price. Kaplan’s program attempts to ‘steal the deal’ by placing a bid
equal to the previous asking price, but only if it can make a profit at that price.
As a resuit Kaplan's program tends to earn at least a normal profit if case 1)
holds, and a super-normal profit if another trader has made a mistake. Since the
decision of how much to bid is much more difficult than the binary buy/sell
decision, it is not surprising that mistakes in bidding are a primary source of
poor trading performance. By staying out of the bidding game, Kaplan's
program is able to avoid making bidding mistakes on its own account while
capitalizing on bidding mistakes of others.

Another reason for the relatively poor performance of the complex, adaptive,
optimizing, and predictive strategies is the inherent difficulty of making accurate
inferences in a noisy marketplace given only a Hmited number of observations
on one’s opponents. The randomness in traders’ token endowments is the
dominant source of uncertainty in any particular DA game. The additional
variation in profits induced by mistakes or stochastic elements in the trading
strategies is insignificant in comparison. As a result, one needs a very large
number of observations on trading outcomes to be able to reliably distinguish
good traders from bad. It follows that it is virtually impossible to try to
recognize and exploit the individual idiosyncrasies of one’s individual trading
partners unless one is interacting with the same group over a very long horizon.
The low signal/noise ratio of realized trading profits combined with the high
dimensionality of the space of possible trading histories and trading environ-
ments implies that programs based on general learning principles (such as
neural networks and genetic algorithms) require many thousands of DA train-
ing games before they are able to trade even semi-effectively.®* Nearly all of the
top-ranked programs were based on a fixed set of intuitive rules-of-thumb that
encoded the programmer’s prior knowledge of the trading process.

This finding suggests that our hopes of using markets populated by ‘artifici-
ally intelligent agents’ in order to evaluate alternative trading institutions may
be too ambitious. It's an open question whether other approaches from the

3 To guote from the eatry by Dallaway and Harvey: ‘Given that we are doing the equivalent of
evolving monkeys that can type Hamlet, we think the monkeys have reached the stage where they
recognize that they should not eat the typewriter. If we could have a 4 billien year time extension
before handing in the entry. we are completely confident of winning.”

J. Rust et al., A computerized double auction tournament 95

literature on artificiai intelligence might be sufficiently powerful to discover
eflective trading strategies, Our impression, however, is that none of the
currently available methods appear capable of the sorts of ‘intuitive leaps’ that
humans seem to make in the process of conjecturing the form of good strategies
based on limited trading experience. It is not clear whether our ability in this
regard is due to some sort of inherited a priori knowledge about markets, or is
simply due to the vast superiority of the hardware and software of the human
brain.

On the other hand, Rust, Miller, and Palmer (1992) show that the set of
top-ranked trading strategies yield a fairly ‘realistic’ DA market in the sense that
their collective behavior matches the key ‘stylized facts’ observed in human DA
experiments. Indeed, if we were to perform a ‘Turing test’ and ask a human to
play 2 series of DA games and determine whether his opponents were computer
programs or humans at remote terminals, we submit that most people would be
unable to tell the difference. This finding may not seem surprising if entrants are
merely encoding their ‘market intuition” in their trading programs. However,
given the complexity of the DA game and the sophistication of human intelli-
gence, if is not obvious that human behavior in these markets can be reduced to
a few simple decision rules.

In joint work with Vernon Smith, we are presently gathering data comparing
the performance of human and computer traders. Cleariy, if one is allowed to do
experiments that change certain environmental parameters, then it is a relatively
easy matter to distinguish human from computer traders. The key distinction is
adaptivity. Most of the programs are ‘hardwired’ to expect a certain range of
trading environments: if we start to move out of this range, we would expect to
see a serious degradation in their performance relative to humans, However, we
don’t expect that humans will be able to significantly outperform computer
traders in ‘standard’ trading environments.>® Although we do not yet have
results that we can report, our experience playing against the top-ranked
programs leads us to conjecture that most human traders will be unable to
consistently outperform simple Kaplan-type trading rules in anonymous mar-
kets consisting of short-run encounters with a stream of heterogeneous oppo-
nents, although some may eventually be able to learn to exploit certain idiosyn-
cracies in repeated play against a fixed set of opponent programs. Anyone who
has actualiy traded in one of these DA markets realizes that the flow of events is
too fast to keep close track of individual opponents and do the detailed Bayesian
updating suggested by game theory. Instead, one finds oneself relying on a few
simple rules and focusing on a few key statistics not unlike some of the trading
programs analyzed in this paper.

**This is certainly true in compulerized chess, where programs such as ‘DEEP THOUGHT play
at the prandmaster level.

96 J. Rust et al., A computerized double anciion tournament

References

Abreu, D. and A. Rubinstein, 1988, Finite automata play the repeated prisoner’s dilemma, Econo-
melrica 57, 345-352,

Andreoni, J. and LH. Miller, 1990, Auctions with adaptive artificial agents, Santa Fe Iastitute
working paper 90-01-0064.

Axclrod, R., 1984, The evoiution of cooperation (Basic Books, New York, NY).

Blum, M., 1967. A machine-independent theory of the complexity of the recursive functions, Journal
of the ACM 14, 322-336.

Botlersiev, T. and I Domowitz, 1992, Some effects of restricting the electronic order book in an
awtomated trade execution system, in: D. Friedman and J. Rust, eds,, The double auction market:
Institutions, theories and evidence (Addison-Wesley, Redwood City, CA).

Cason, T.N. and D. Friedman, 1992, An empirical analysis of price formation in double auction
markets, in: I, Friedman and J. Rust, eds., The double auction market: Institutions, theories and
evidence (Addison-Wesley, Redwood City, CA).

Easley, D. and J. Ledyard, 1992, Theories of price formation and exchange in double oral auctions,
in: D. Friedman and 1. Rust, eds., The double auction market: Institutions, theories and evidence
(Addison~Wesley, Redwood City, CA).

Friedman, D., 1991, A simple testable model of double auction markets, Journal of Economic
Behavior and Organization, 4730,

Gode, DK, and S. Sunder, 1992, Allocative efficiency of markets with zero intelligence (Z1) traders:
Murket a5 & partial substiiute for individual rationality, Journal of Political Economy, forthcom-
ing.

Haycek, F., 1945, The use of knowledge in society, American Economic Review 35, 519-530.

Marimon, R., E. McGrattan, and T. Sargent, 1990, Money as medium of exchange in an economy
with artificially intelligent agents, Computer Science in Economics and Management 3, 109-123.

Paimer, R.G., J. Rust, and] H. Miller, 1990, Double auction tournament participant’s manual, Santa
Fe Institute publication,

Rust, X, J. Miller, and R, Palmer, 1992, Behavior of trading automata in 2 computerized double
auction market; in: D. Friedman and J. Rust, eds, The double auction market: Institutions,
theories and evidence (Addison-Wesley, Redwood City, CA).

Selten, R, M. Mitzkewitz, and G. Uhlich, 1990, Duopoly strategies programmed by experienced
players, University of Bonn manuscript.

Wilson, R.B., 1983, Incentive efficiency of double auctions, Econometrica 33, 1101-1116.

Wilson, R.B., 1987, On equilibria of bid-ask markets, in: G. Feiwell, ed,, Arrow and the ascent of
modern econemic theory (Macmillan Press, London) 375414,

