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Behavior of Trading Automatain a
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This paper reports the results of a series of tournaments held at the Santa
Fe Institute beginning in March, 1990 in which computer programs played
the roles of buyers and sellers in a synchronized double anction market.
We show that despite the decentralized nature of the trading process and
traders’ incomplete information about supply and demand, transaction-
price trajectories for a heterogeneous collection of computer Programs typ-
ically converged to the competitive equilibrium, resulting in allocations
that were nearly 100% efficient. We also show that a very simple trading
strategy is a highly effective and robust performer in these markets. A sim-
ple rule-of-thumb was able to outperform more complex algorithms that
used statistically based predictions of future transaction prices, explicit
optimizing principles, and sophisticated “learning algorithms.”
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1. INTRODUCTION

This paper reports the results of a series of eomputerized double auction tourna-
ments held at the Santa Fe Institute beginning in March 1990. The tcurnament
consisted of over 30 computer programs (eulomeia traders) playing the roles of
buyers and sellers in a simplified synchronized double auction (DA) market. The
tournament was organized with several objectives in mind: (1) to get new insights
on the form of effective trading strategies, (2) to compare the performance of au-
tomata traders and human traders, and (3) to create an artificial market to help us
better understand the operation of the “invisible hand” in real-world DA markets.

The remarkable efficiency properties of DA markets have been documented in
numerous laboratory experiments using human subjects. By assigning subjects to-
kens with fixed redemption values and token costs, well-defined supply and demand
curves can be constructed. The intersection of these curves defines the price and
quantity at which neoclassical economic theory predicts trading will occur, the com-
petitive equilibrium (CE) solution. The complication is that in most experimental
markets each trader only knows their own token values: no single trader has enough
information to determine the market supply and demand curves in order to com-
pute the CE. The nearly universal finding of more than three decades of hunan
experiments is that despite the presence of incomplete information and the small
number of i;.ders, transaction prices and quantities quickly converge to CE. The
resulting me: .- =locations are highly efficient: traders are typically able to exploit
close to 100% - -« potential profits.

Although the iextbook “supply equals demand” model may provide a good
prediction of closing prices and quantities in DA markets, it fails to explain the
dynamics by which this happens. A more sophisticated theory is required to show
how the trading process aggregates traders’ dispersed information, driving the mar-
ket towards CE. The essence of the problem was clearly stated by Friederik Hayek
nearly 50 years ago:

“The problem is in no way solved if we can show that all the facts, if
they were known to a single mind, would uniquely determine the solution;
instead we must show how a solution is produced by the interactions of
people each of whom possesses only partial knowledge. To assume that all
the knowledge to be given to a single mind in the same manner in which we
assume it to be given to us as the explaining economists is to assume the
problem away and to disregard everything that is important and significant
in the real world.” (Hayek,!® p. 530)

Since the use of a computer tournament to gain insights into human trading
behavior is somewhat unorthodox, Section 2 briefly reviews current theories of DA
markets. Although these theories have provided important insights into the nature
of trading strategies and price formation, it is fair to say that none of thern has
provided a satisfactory resolution of “Hayek’s problem.” In particular, current the-
ories assume a substantial degree of implicit coordination by requiring that traders
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have common knowledge of each other’s strategies {in game-theoretic models), or
by assuming that all traders use the same strategy (in learning models). Little is
known theoretically about price formation in DA markets populated by heteroge-
neous traders with limited knowledge of their opponents. Although experimental
studies have provided considerable empirical evidence on the nature of trading be-
havior under these conditions, they have failed to cast light on trading straiegies
which are essentially unobservable. :

In order to observe strategies directly, we sponsored a toumament in which
entrants submitted trading programs playing the roles of buyers and sellers in a
computerized DA market. To attract good programs we offered $10,000 in prizes,
paid out in proportion to profits earned by entrants’ programs over the course of the
tournament. In return, we obtained a heterogeneous collection of trading programs
to populate a unique laboratory for studying decentralized price {ormation. Section
3 describes the rules of the tournament and the structure of our “synchronized DA,”
a modified version of the traditional continuous DA market designed to simplify the
task of programming strategies and guarantee equal trading opportunities. Section
4 presents the results of the cash tournament held at the Santa Fe Institute in

March 1990 and subsequent non-cash “scientific” and “evolutionary” tournaments
held in 1991. We find that the top-ranked programs yield a fairly “realistic” work-
ing model of a DA market in the sense that their collective behavior is consistent
with the key “stylized facts” of human experiments. We also find that a very simple
strategy is a highly effective and robust performer in these markets. This strategy
was able to outperform more complex algorithms that use statistically based pre-
dictions of future transaction prices, explicit optimizing principles, or sophisticated
“learning algorithms.” The basic idea behind the approach can be described quite
simply: wait in the background and let others do the negotiating, but when bid and
ask get sufficiently close, jump in and “steal the deal.” However, the results of our
evolutionary tournaments show that when too many other traders try to imitate
this strategy, market efficiency can fall precipitously due to negative information
externalities. Specifically, if too many traders “wait in the background,” little in-
formation is generated until just before the end of the trading period. This tends
to produce “closing panics” as traders rush to unload their tokens in the final sec-
onds of the trading period, resulting in failure to execute all potentially profitable
transactions. .

Long-run stability in the trading environment seems to require the presence
of active bidders that provide a flow of information to “lubricate the market.”
However, most of the active bidding strategies seem to be too impatient, exposing
themselves to a high tisk of mistakes and consequent exploitation by the back-
ground traders. Although a few of the more complex trading programs appear to
be resistant to short-run exploitation, none of them appear strong enough to resist
the parasitic effects of the background traders in the long run. We show that a mar-
ket dominated by background traders can be “quasi-stable” if a small but steady
stream of shori-lived *noise traders” enters the market. The noise traders provide
a flow of information and source of new capital to keep the market running despite
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being nearly totally dominated by background traders. However, since price volatil-
ity is very high in such a market, it is likely to present an attractive opportunity
for exploitation by new strategies. Section 5 concludes with some observations on
how one might find such strategies.

2. REVIEW OF PREVIOUS APPROACHES TO ANALYZING DA
"MARKETS

Modern economic theory has attempted to explain the apparent disequilibrium
behavior in DA markets as actually being the equilibrium outcome of 8 game of
incomplete information. The “maintained hypothesis” is that observed trading be-
havior is a realization of a Bayesian Nash equilibrium (BNE) of this game. Given
the immensity of the strategy space {especially in continuous-time formulations),
it has proven extremely difficult to characterize the equilibria of these games. The
clearest characterizations have been obtained by Satterthwaite and Williams,3132
chapter 4, for a class of static DA games known as the k-double auction. They have
established that equilibrium bidding stategies in the k-DA converge 1o truthielling
as the numbier of traders gets large, which implies that prices and quantities con-
verge to CE. However in a continuous DA it is easy to see that truthful revelation
is a very peo- siratzoo: if a buyer places a bid equal to their true redemption value
and another ... zccepts that bid, the bidder will clearly earn zero profit.ll

To the best of our knowledge, the only characterization of equilibrium in a
dynamic DA market is due to Wilson.*! His equilibrium, described as a “waiting
game Dutch auction” (WGDA) by Cason and Friedman (chapter 8),

4. .. offers a conerete explanation of the mechanism by which the dispersed
information about traders’ valuations is manifested in the prices at which
transactions are consurmmated. The mechanism, according to the present
hypothesis, is multilateral sequential bargaining in which the traders are
endogenously matched for transactions via a signalling process using delay
as the primary signal.” (p. 412)

Cason and Friedman® have shown that beyond the prediction of high ez post
trading efficiency, many of the other predictions of Wilson's model are inconsistent

1 The static k-DA market is aiso known as a uniform-price, sealed-bid auction. The dynamic DA
arket is typically identified with continuous real-time trading according to the rules of standard
experimental DA markets. For definitions and discussions of static vs. dynamic DA, see Friedman,
chapter 1 of this volume.
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with the behavior of human traders in laboratory experiments. Wilson’s model pre-
dicts that trade will occur in the efficient order,i? whereas in human experiments
the rank correlation between the order of transactions with the efficient order is
typically much less than 100%. Indeed, Wilson’s model predicts that in equilib-
rium all ex post efficiency losses will be due to unrealized intra-marginal trades,
i.e., the market may trade too few tokens but never too many. However, in experi-
mental settings, a significant fraction of efficiency losses are due to extra-marginal
trades. This is due to the fact that in human experiments, buyers and sellers are
not matched for transactions as predicted by Wilson’s waiting-game equilibrium:
it is frequently the case that extra-marginal traders succeed in “bumping” intra-
marginal traders.?l Furthermore, bidding behavior seems to be poorly described as
a sequence of Dutch auctions called exclusively by the current bidder or asker. In
human experiments there is often stiff competition for the “right” to hold the cur-
rent bid or ask, which is frequently “stolen” by other more eager traders. Finally,
Cason and Friedman show that in human experiments transaction price changes
are significantly negatively autocorrelated. Wilson’s model predicts zero autocorre-
lation in price changes since equilibrium transaction prices must follow a martingale
to preclude intertemporal arbitrage.

Given enough freedom in the specification of traders’ beliefs and risk aver-
sion, Ledyard®® has shown that essentially any set of undominated strategy profiles
can be “rationalized” as a BNE outcome of the DA trading game.l! Thus, it may
be possible to construct game-theoretic models wherein differential risk aversion
provides an “explanation” for extra-marginal efficiency losses observed in human
experiments. However, although we know that models can be “rigged” to match any
set of stylized facts, there is no guarantee that they will be theoretically plausible.
Perhaps the least plausible element of any game-theoretic model is the assump-
tion that players have common knowledge of each other’s beliefs and strategies.
This presumes an unreasonably high degree of implicit coordination amongst the
traders, begging Hayek’s question of how coordination is achieved in a decentral-
ized market in the first place. Game theory also assumes that there is no a priori
bound on traders’ ability to compute their BNE strategies. However, even traders
with infinite, costless computing capacities may still decide to deviate from their
BNE strategies if they believe that limitations of other traders force them to use
sub-optimal strategies. Since traders can only observe outcomes, they will never be

1?iThe efficient order is the trade sequence which maximizes surplus, Le., the first trade ocours
between the buyer with the highest redemption value and the seller with the lowest token cost,
the second trade occurs between the buyer and seller with the next most valuable tokens, and so
on.

13I"This suggests that differences in traders’ “impatience” may also be a function of other factors we
might call “aggressiveness” {or “stupidity”?) which may have no direct relation to the magnitude
of their token values,

4 Easley and Ledyard?® provide an argument in footnote 13 & p- 76 of their paper that this result
will bold even if traders are assumed to be risk neutral.
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certain of exactly which strategies their opponents are using. This learning prob-
lem is of such a high dimensionality relative to the limited number of observations
available within typical trading periods that it may not pay to try to adopt a
sophisticated Bayesian updating strategy.’ Game-theoretic solutions can also be
“non-robust” in the sense that equilbrium solutions depend critically on seemingly
inessential details of the trading rules and the common-knowledge assumptions
about the form of the probability distribution of traders’ token values.ls! However,
behavior of human subjects does not appear to be dramatically affected by mi-
nor changes in DA trading rules or the presence or absence of common knowledge
about the distribution from which tokens sre drawn.[?) In a game-theoretic model
it would be impossible to even define the concept of equilibrivin without such prior
information.

In response to the difficulties of using game theory to analyze and explain
experimental findings in dynamic DA markets, economists have begun to formu-
late explicit disequilibrium trading theories based on simple yet plausible rules-of-
thumb. Examples of this approach include Easley and Ledyard,® Friedman,!! and
Garcia.!® The results of these studies suggest that rationality is not a necessary
condition for observing efficient outcomes and convergence to CE in DA markets.
Gode and Sunder!® provided a particularly striking demonstration of this result.
They showed that markets populated by “zero-intelligence” (ZI) strategies exhibit
very high ez post efficiencies, and the corresponding price trajectories frequently

1511t has been i+ <39 that Bayesian updating can be inconsistent in infinite-dimensional param-
eter spaces. In cort.un cases the prior distribution can completely overwhelm the data in the sense
that the posterior will not converge to the “truth” even given an infinite number of observations.
Intuitively, this will also be the case when the dimensionality of the object being learned is large
relative to the number of observations.

18] For example, the seemingly innocuous change in the clearing rules that transform the 1.DA to
the MDA described in Satterthwaite and Williams®? yields an entirely different set of equilibria,
which are much more difficult to analyze. In particular they show that trader's strategies may
change substantially (for example, truthteliing is no longer a dominant strategy for sellers: in the
MDA equilibrium strategies may involve asking less than their token costs) and the resulting game
may have no pure strategy equilibria.

("iFor example, Kagel and Vogt's experimental results!? do not reveal a significant difference
in behavior between the 1-DA and the MDA, In extreme cases, however, prior information can
affect DA outcomes but not always in the way one would expect. For example, in experiments
using the “swastika" configuration for supply and demand curves, Smith337 has shown that
common knowledge of the realized values of the tokens {i.e., compiete information about supply and
demand) actually retards convergence to CE. Apparently the existence of complete information
allows some subjects to try to achieve allocations that are better than their CE profit aliocations,
leading to conflicts that inhibit convergence and reduces efficiency, a result that may also be due
to the fact that “when agents know each other’s payofs, it provides scope for interpersonal utility
comparisons which impinge on behavior” (Smith,37 pp. 357~358). Thus, common knowledge seems
to be neither necessary nor sufficient for attaining CE outcomes.
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converged to CE.!8 These findings strongly suggest that the nice properties of DA
markets may have more to do with the properties. of the institution itself than the
rationality of traders per se.ll

Although ZI traders are collectively rational, they are individually irrational
and, therefore, unlikely to provide a good model of human trading behavior. Specifi-
cally, we show that ZI traders, like truthtellers, will be rapidly exterminated by even
slightly more sophisticated trading strategies. Their collective behavior in succes-
sive trading periods is necessarily /ID, whereas humans exhibit strong inter-period
learning effects. In addition, even though price trajectories frequently converge
to equilibrium, overall price volatility in DA markets populated by ZI traders is
unrealistically high.2% Similar results hold for markets populated by truthtellers.
Truthtelling can be viewed as a limiting form of the ZI strategy when the set of
prices over which it randomizes collapses to the true token value. Since trade in
a synchronized DA market populated entirely by truthtellers is necessarily fully
efficient, it follows that ZI traders converge to 100% efficiency as the set of prices
over which they randomize converge to a unit mass at their true token values. The
fact that ZI traders are so efficient, even when large random deviations are allowed,
is somewhat surprising. This result clearly depends on the ability to “recontract”
in dynamic DA markets. Gode and Sunder!® show that in the best case with only
one intra-marginal buyer and seller, roughly only 50% efficiency is achieved in the
first step of a synchronized DA.11

However, strategies that are more individually rational than ZI may display
less collective rationality. One of the lessons from Axelrod’s® prisoner’s dilemma
tournament is that sometimes players can be “too smart for their own good” in
the sense that sophisticated and self-interested behavior can be deterimental to
achieving good cooperative outcomes. The question is whether this is true in DA
markets as well: is it the case that sophisticated optimizing strategies make indi-
vidual traders better off, but reduce market efficiency? This seems to be true in
DA markets as well: clever strategies can exploit unsophisticated “nice” strategies

IB1A ZI selier with token cost C asks an amount C+ I7, where {7 is uniformly distributed over its
support S. Similarly a Z/ buyer with redemption vajue R bids amount R — /. At each step ¢ of
trading, a ZI trader uses JID draws I to construct its bids and asks, accepting the first profitable
opposing bid or ask that comes along. Thus, ZI traders are “minimally rational” in the sense that
they do not attempt to optimize or learn from past observations, although they do aveid trading
at a loss by always bidding below their redemption values or asking above their token costs.
*!We should aiso mention related work by Marimon, McGratten, and Sargent?! who studied
the behavior of a collection of Holland's!® classifier systems ip a dynamic exchange economy.
Although their economy is a more complicated dynamic market than the essentially static DA
market studied here (in particular, it can have multiple isolated equilibria), they also found that
their artificial agents eventually converged to an equilibrium of the system.

{00 There are aspects of the behavior of Z1 traders that are consistent with human behavior, such
as significantly negatively autocorrelated transaction price changes and low correlations between
the actual order of trade and the efficient order. For details, see Cason and Friedman.b

[(1bThis suggests that ZI traders will create significant inefficiencies in one-shot sealed-bid DA’s
such as the k-DA. This is confirmed by simulations in Kagel and Vogt*® which show that in the
k-DA, Z1 traders acheive efficiencies in the range of only 30-50%.
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such as {ruth teller or 21, but if everyone uses these strategies rnarket efficiency
falls. We suspect that an analog of the Satterthwaite-Williams result carries over
to dynamic DA markets: namely, that the gains from behaving strategically are
negligible even in markets with very small numbers of traders. However, in order
to define the gains to behaving strategically, we also have to define an appropri-
ate notion of what it means to behave passively or “non-strategically.” Identifying
non-strategic behavior with truthtelling will not work in dynamic DA markets since
truthtelling, like Zi, is easily exploitable. In a large and efficient market, there is
reasonably well-defined notion of pricelaking behavior: namely, placing all bids or
asks at the market price and only accepting a bid or offer that is at least as good as
the market price. In an efficient market it seems intuitively clear that pricetaking
should be close to a dominant strategy.' However, it is less clear exactly what
it means to be a pricetaker in thin markets with small numbers of traders where
initial transaction prices are highly volatile and potentially far from equilibrium, a
situation that is typical of the first few periods of most experimental DA markets
as well as many markets observed in the field.

3. STRUCTURE OF THE DA TOURNAMENT

Most of the - “ing programs used in this study were submitted in response to
advertisemer:: = “Liouble Auction Tournament” held at the Santa Fe Institute
in March 1990, ... prizes totalling $10,000 were offered to a maximum of 100 en-

trants in proportion to the trading profits earned by their programs over the course
of the tournament. In addition to prize money and wide publicity, a substantial
effort was devoted to make the programming and debugging of trading strategies
as easy as possible. This included development of the Santa Fe Token Erchange
(SFTE) which opens at the start of each hour for token trading over the worldwide
Internet computer network.i13]

The computerized DA was implemented via a message-passing protocol which
specifies the form of allowable messages that programs can send, such as bids, asks,
and buy and sell orders. Entrants were provided with a simple “skeleton” trading

ZiRoberts and Postlewaite?® were the first to formally establish such a result in the context
of a static complete-information Walrasian exchange economy. The results of Satterthwaite and
Wiiliams**9% and Rustichini, Satterthwaite, and Wmlamsso cited in Section 2 can be interpreted
as an extension of the Roberts-Postlewaite result 16™a non-Walrasian exchange economy with
incomplete information. :

B3 Many entrants reported that the SFTE was useful for refining their trading programs in advance
of the actual tournament. We also distributed “free-ware" to allow entrants who did not have
Internet access to set up their own local token exchanges.
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Buyer 1
/ Seler 1
Buyer 2 o] Monitor
/ \ Seller 2 ™
Buyer 3

FIGURE 1 Interplayer communication via the monitor.

program (written in C, Fortran, or Pascal) which handled all the message-passing
housekeeping, allowing them to focus on the logic of their strategies, rather than on
programming details. A central monitor program coordinates the trading process by
communicating with all of the trading programs, executing their buy and sell orders
and relaying their bids and asks to the other traders. Trading programs (which could
also be interfaces to human traders) communicate only with the monitor and not
directly with each other as illustrated in Figure 1. It is important to note that the
monitor prograrnis only a clerk: it is not an “auctioneer” and has no market-clearing
authority.[14

The structure of our computerized DA market is very similar to the continuous-
time experimental DA markets described in Section 2. The major differences are
(1} time is discretized into alternating bid/ask (BA) and buy/sell (BS) steps, and
(2) transactions are cleared according to AURORA rules described below. The DA
market opens with a BA step in which all traders are allowed to simultaneously
post bids and asks. After the monitor informs the traders of each others' bids
and asks, the holders of the current bid (highest outstanding bid) and current ask
(lowest outstanding ask) enter into a BS step.*s] During the BS step, either player
can accept the other player’s bid or ask. If an acceptance occurs, a transaction is
executed.(8! A trading period is simply a set of S slternating BA and BS steps.

The discretization of time was adopted to simplify the programming of trading
strategies and improve the synchronization of communications between players and
the monitor in a multiprocessing or network-computing environment where delays
may vary from player to player and moment to moment. In a continuous-time
environment, “faster” traders have an inherent advantage. This speed advantage
may arise due to communication delays {e.g., simultaneous messages sent from a
trader in Japan and Chicago may arrive at different times at a central computer in

14The monitor does enforce trading rules, and can impose upper- and lower-price limits. It also
has the authority to censor iliegal or late messages, although no cpu time limits were imposed in
the actual tournameant.

[38{1f & current bid (ask) does not exist, then all buyers (sellers) enter into the BS step,

[18'1f both parties accept each other's offers, the monitar randomly chooees between the current
bid and ask to determine the transaction price.
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New York) or due to processing delays (e.g., machines may be able to recognize and
respond to certain conditions faster than humans). By discretizing time and setting
sufficiently wide response-time limits, we can effectively guarantee that all traders
have equal trading opportunities. In the Hmit, our implementation of a discrete-
time DA market is not restrictive since 2 continuous-time trading environment can
be arbitrarily well approximated by a discrete-time environment with very many
short trading intervals.[t7i

The AURORA rules were inspired by similar rules used by the AURORA com-
puterized trading system developed by the Chicago Board of Trade. AURORA
rules stipulate that only the holder of the current bid or current ask are allowed to
trade. We adopted these rules as a substitute for ad hoc tie-breaking rules which
&re necessary in discrete-time trading environment when several traders are able to
simultaneously accept an outstanding bid or ask.l® In early human experiments
using random tie breaking rather than AURORA rules, we found that traders of-
ten expressed frustration that trade execution seemed more a matter of luck than
strategy due to the fact that other traders would repeatedly win random tie breaks
for the acceptance of an outstanding bid or ask. On the other hand, experimental-
ists have criticized the AURORA rules on the grounds that it makes it harder for
traders to remain in the background since it forces them to “show their hand” by
posting a winning bid or ask before being allowed to trade. We have found, however,
that these rules do not place a significant constraint on background traders: they
can still stay guietly in the background for most of the trading period, jumping
in the moment {:+: detect an attractive bid or ask. Indeed, this is precisely the
strategy followed by the winner of the tournament.

An individual DA game is divided into one or more rounds, and each round is
further divided into one or more periods. A single period of the DA game consists of
a fixed number of alternating BA and BS steps as described above. The reason for
structuring games to have multiple rounds and periods within rounds is to control
players’ abilities to learn about their opponents. Tokens and redemption values
are fixed within each period of a given round, but are allowed to change between
rounds. Thus DA games with many periods allow players to learn the value of each
others’ tokens, while DA games with many rounds allow players to learn sbout each
others’ strategjes.

A1 the start of 2 DA game, the monitor broadcasts public information to the
traders, including the number of buyers and sellers and their identities, the number
of rounds, periods, and time steps, the number of tokens each agent will have, and
the joint distribution F from which the traders’ token values are drawn. Next, the
monitor sends each trader a packet of private information, namely, their realized

171 The same point applies to price units in our DA market, which were rounded to the nearest
integer.

8, Precumably, the Chicage Board of Trade had a very different motivation for considering the
AURORA rules. Since they have the effect of making all transactions publicly observable, they
may have been designed partly in response to trading abuses that were uncovered in the Chicago
Exchanges in the late 1980s.
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token values. Since public information is provided by a simultaneous broadcast to
all players, it serves as a means of ensuring that players have common knowledge
about all relevant game parameters. The joint distribution F was communicated to
players using a four-digit gametype variable. Token values are represented by Ty
where j indexes the trader, and k indexes the token assigned to the trader. Tokens
are randomly generated according to
A+ B+ Cp+ Djx, if7isa buyer;
Ton = {A + Cx + Djx, if 7 is a seller, 1)

wherel’®l 4 ~ U0, R,}, B ~ U0, Ry}, Ci ~ U0, Rg], and D). ~ UI0, Ry]. Notice
that when R, = R; = R3 = 0, we have the standard independent private-values
model where tokens are independently uniformly distributed on the interval [0, Rq].
A gemetype equal to 0 indicates an environment where redemption values were
generated by an unspecified process.

The best way to understand what goes on in a DA market is to study the
monitor output for the sample tournament game in Figure 2. The figure shows the
first period of 2 DA game with two rounds and three periods per round. In this case
there are four buyers and four sellers, and each trader is assigned four tokens. The
implied supply and demand curves yield 2 unique CE price of 691 at a quantity
of 11.2% The “4+” next to each trader’s token indicates an intra-marginal tcken,
a “~" indicates an extra-marginal token, and an “=" denotes a token value equal
to the CE price. The first BA step yields a current bid of 435 held by Bl {buyer
1) and a current ask of 1128 held by S2 (seller 2). Neither Bl nor 82 chose to
accept the other’s bid or ask at BS step 1, so the bidding begins again at BA step
2. The first transaction occurs in BS step 4 when both B3 and Si simultaneously
accept each other’s offers. Here, a random tie-break results in S3 selling its first
token (denoted by capital A) at B3’s bid of 717. Immediately after the transaction
the current bid and ask are set to zero and a new BA step starts up in period
5. The game continues this way until the final BS step is reached in step 25. The
box at the end of the monitor output provides a summary of the period’s trading
activity: there were ten transactions yielding a total profit of 604, which is 91%
of the total surplus of 663. In this case, the source of the inefficiency was due to
two events. First, one intra-marginal trade was not consummated. Second, there
were two extra-marginal trades made by B3 which displaced an equal number of

(181 Each of the four digits of the gametype variable correspond to {Ry, ..., R4} according to the

base-3 coding, R; = 8%() — 1 where k(i) is the ith digit of gametype.
{%0The discrete nature of the market often implies that a2 nonunique equilibrium point emerges,

in which case we have a range of equilibrium prices or guantities.
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DA game 1 Fxi Hay 24 02:14:05 1981
protccol: 5  moeniter: 443  gametype: 8453
nrounds: 2 nperiods: 3 ntimes: 25
minprice: 1 maxprice: 2000  ntokens: 4
rani: 728  ran2: a0 ran3d: 242
Tand: 26 deadsteps: 100 timeoux: 30
id name id name
B1 silverbuiffalo 8% burchard
B2 staecker 52 pricetaker
B3 perry §3 breton
E4 anon? 54 anderson
| Reund 1, peried 1 [
| token | B 82 B3 B4 | 81 52 $3 S84 | Equilibrium |
Ay + + + +
I a 1 754+ 760+ 761+ T51+ | 651+ 666+ 646+ 663+ | 691 to 651 |
I b b T2+ 708+ TiT+ T19+ | 661+ 675+ 658+ 668+ §  av: 681.0 |
{ c© | 691= 705+ 690~ 702+ | 6BO+ 683+ 680+ 603~ |  trades: 11 |
{ d | 681~ 678~ $BO~ €91= | 779~ 776~ 788~ T4 | i
it stepl B1 B2 33 Ba { 831 82 $3 54 | cbid coff pricel
+ + + + +
1 BA | 435 278 368 345 | 1550 1128« 1182 1999 | 435 11728 i
I ES} | I 435 1128 i
2 Ba | 440 574e | 1127 1080 ©66« 108658 | 574 966 i
f BS| ! I B74 888 I
3 BA | @ BT8  6T6e [ BO3e 542 827 930 | 676 8O3 i
| BS| ; | 678 803 I
14 B34 | @ 631  T1Te | 6528 93 7I70 781 | TiT 652 {
| BS| a>h | a>a | 17
{5 Ba | 216 606+ 345 | 1075 Ti3s B57 1889 | 606 713 |
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FIGURE 2 Sample monitor output.
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intra-marginal trades. This example illustrates a typical feature of efficiency losses
in dynamic DA markets, namely the coexistence of extra-marginal trades along
with unconsummated intra-marginal trades.i2!l

Tournament entrants were told that their programs would be placed in an
unspecified number of alternative environments. Each environment is a complete
specification of all relevant parameters of the DA game listed in Table 1. Partic-
ipants were told potential ranges for each of the parameters, but were not given
any specific advance information about how the actual environments would be se.
tected. The actual DA tournament consisted of playing & large number of DA games
in ten separate environments presented in Table 1. Each of the ten environrnents
were allocated $1,000 prize money, and separate conversion factors were calculated
to translate token profits into dollar earnings. The conversion factor ¢(i) for en-
vironment 1 is the ratio 1000/7°5(:), where T'S(i) is the total surplus available in
environment i. Due to the lack of 100% efficiency, actual dollar paymerits in the
tournament amounted to 38,937, Overall, we ran a tota! of 2,233 games in the ten
separate environments, comprising 13,398 individual periods of play.

_ One can see from Table 1 that the tournament subjected programs to a wide

range of trading conditions. The base case (BASE) was an environment similar
to the one used in pre-tournament trials at the SFTE. Other environments include
duopoly and duospony (BBBS and BSSS), a degenerate surplus distributions where
all players receive the same token values shifted by a common random constant
(EQL), an independent private values environment where each trader’s token is
an JID draw from a uniform distribution (RAN), a single-period environment that
prevented players from learning from previous market outcomes (PER), a “high-
pressure” environment where the traders’ time allotment was very short (SHRT),
and an environment where each trader was only assigned a single token (TOK}.
Our intention was to {orce programs to compete under & broad range of conditions
in order to provide a rigorous and comprehensive test of their effectiveness.

To insure that tournament earnings were not due to a series of lucky token
draws, we developed a sampling scheme that guaranteed that, all trading programs
had equal surplus endowments with probability 1.1% Once a random set of token
values was drawn according to the sampling scheme given in Eq. (3.1), trading pro-
grams were randomly selected to play in a set of N games (where N = 30 is the
tota] number of entrants) subject to the constraints that no program played a copy

121 The monitor output contains a number of other symbols. @ denotes a bid equal to the current
bid, X and Y denotes a bid below the current bid and the minimum allowed price, respectively
{both illegal), and Z denotes a bid above the maximurn allowed price. § denotes a bid above
the current ask (and current bid), & denotes a bid above the current ask but not current bid, ~
denotes a token traded at a loss, and ! denotes a crossing of the current bid and ask.

2211 the case of two trading programs that were only programmed to play one side of the market,
a Skeleton stand-in trader was substituted in the games they refused to play. There are slight
variations in actual token endowments caused by the fact that one program occasionally “died”
midway through a trading period, resuiting in forfeiture of its potential surplus in the remaining

pericds of the game,
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TABLE 1 DA Trading Environments.

Parameter Environment

BASE BBBS BSSS EQL LAD PER SHRT SML RAN TOK
gametype 6453 6453 6453 0 0 6453 6453 6453 0007 6453
minprice 1 1 1 1 1 1 1 1 1 1
maxprice 2000 2000 2000 2000 2000 2000 2000 2000 3000 2000
nbuyers 4 6 2 4 4 4 4 2 4 4
nsellers 4 2 6 4 4 4 4 2 4 4
ntokens 4 4 4 4 4 4 4 4 4 1
nrounds 2 2 2 2 2 6 2 2 2 2
nperiods 3 3 3 3 3 1 3 3 3 3
ntimes 75 50 50 75 75 75 25 50 50 25
games 1624 1624 1624 1624 1624 1624 1624 3428 1624 1624

games/player 56 56 56 56 56 56 56 112 56 56
periods/piayer 336 336 336 336 336 336 336 336 336 336

conversion
ratio (x107%) 6.11 8.95 9.73 348 357 697 7.04 632 1.04 206

of itself in the same game and all programs played all positions (B1, B2, 51, 82, etc.)
an equal number of times. After this set of N games was completed, the scheme
was repeated with a new set of token values. This sampling process guarantees that
differences in the trading profits earned by the traders can be ascribed to differences
in their trading ability, since each program received the same endowment of tokens
and encountered roughly the same collection of opponents in a large number of
repiications of the DA game.

4. RESULTS OF DA TOURNAMENTS

We received 30 programs for the first (cash) tournament held in March, 1990, Table
2 sumrmarizes the entries, listed by the name of the participant(s) who submitted
the program.’) Of the 30 entries, 15 were from economists, 9 from computer scien-
tists, 3 from mathematicians, and the remaining 3 were from an investment broker,

1221y cases where trading programs were developed by teams of individuals and we were unable
to determine the primary author, we substituted a program nickpame supplied by the authors.
We also received two anonymous entries,
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a professor of marketing, and a joint entry from two cognitive scientists. Several
of the entries were outgrowths of research papers describing formal models of DA
trading behavior.[2¢ Several of the entries emerged from working groups that co-
developed sets of strategies, in some cases pre-testing them in “local tournaments”
using our double auction sofiware. These groups include seven entries from the
Economic Science Lab (ESL) at the University of Arizona, three from the Univer-
sity of Minnesota, and two each from the University of Colorado (Economics) and
Carnegie-Mellon University (Computer Science).1s! The table also includes four en-
tries from SFI including the ZI, truthtelling, and pricetaking strategies discussed in
Section 2, as well as a “skeleton” strategy provided to entrants as a simple example
of a working trading program. Due to potential conflict of interest, none of the
latter programs were entered in the cash tournament held in March 1990 although
they were used as experimental controls in subsequent “scientific tournaments.” All
of the entrants programmed their strategies by replacing the bid/ask and buy/sell
subroutines of the skeleton program with their own code. Although versions of the
skeleton program were available in C, Fortran, and Pascal, almost all of the entries
(26 out of 30} were programmed in C. Only two were written in Fortran, and two
in Pascal.

We found that the most useful way of comprehending the variety of strategies
in Table 2 was to classify them along the following dimensions:

sitnple vs. complex,

adaptive vs. nonadaptive,
predictive vs. non-predictive,
stochastic vs. non-stochastic,
optimizing vs. non-optimizing.

Rust, Miller, and Palmer® describe how these categories are defined and pro-
vide a detailed analysis of individual trading programs. In general, we found that
although there was a substantial range in program complexity, the majority of
the programs appeared to encode the entrant’s “market intuition™ using simple
rules of thumb. Since these rules are “hard-wired,” most of the programs are also
classified as nonadaptive. Exceptions include & neural network program submitted
by cognitive scientists Dallaway and Harvey, and an “adaptive cellular curve fit-
ter” submitted by mathematician Paul Burchard. Besides using private information
about token values, most of the programs relied on only small number of public
information variables, the current bid, ask, and elapsed time being the most impor-
tant. Only ten programs made use of the prior information about the distribution

P4l For example, Kennet-Friedman entry is based on Friedman's!! model of DA treding as a
Bayesian game against nature (BGAN), and the Ledyard-Olson entry is based on Easley and
Ledyard’s model described in Easley and Ledyard.? .

{251 Individuals contributing from the Arizona group include Shawn LaMaster, Steve Rassenti,
Roland Michelitsch, Kevin McCabe, Vernon Srith, Corinne Bronfman, and Mark Van Boening.
Individuals contributing from the Colorado group include Greg Fullerton, Mark Cronshaw, Jamie
Kruse, and B. J. Lee.
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of token values provided by the gametype variable. Although 20 programs made use
of the number of buyers and sellers in the DA game, only two programs (Ledyard-
Olson and Staecker) used this information in an explicit way, e.g., by including
separate “monopoly subroutines.” Most of the programs did not attempt to keep
track of the behavior of individual opponents or make statistical predictions of fu-
ture market quantities. An exception was the program of Mark Staecker, developed
as part of a senior honors thesis at the University of Western Ontario, which pre-
dicted the next high bid, low ask, and equilibrium price using market-level statistics
from previous periods. Based on these predictions, Staecker's program decides if a
transaction is likely to occur at the next BS step and if so, uses its predictions to
place an “attractive” bid or ask in the next BA step.

The top-ranked program was subrnitted by economist Todd Kaplan of the Uni-
versity of Minnesota. It was one of the shortest programs submitted and is clas-
sified as simple, nonadaptive, non-predictive, non-stochastic, and non-optimizing.
The second-ranked program was submitted by computer scientist Mark Ringuette
from Carnegie-Mellon University. Despite the fact that they were independently
developed, both strategies are remarkably similar. The strategies can be described
in one line as wait in the background and let the others do the negotiating, but
when bid and ask get sufficiently close, jump in and steal the deal. These programs
succeed in “stealing the deal” by bidding an amount greater than or equal to the
previous current ask. Ringuette’s program differs from Kaplan’s by randomly over-
bidding the previous - rrent ask. When time is running out or when a long time
has elapsed sino inaiing its last trade, Ringuette's program defaults to a modi-
fied version of the Skeleton bidding strategy whereas Kaplan’s program places a
bid equal to the smaller of the current ask or its current token value. In practice
this implies that Kaplan's program eventually defaults to truthtelling mode when
confronting patient opponents who delay making “serious” bids and asks.

4.1 RESULTS OF MARCH 1930 TOURNAMENT

Table 3 presents the dollar payoffs earned by the eligible trading programs in
the March 1990 tournament, broken down by environment.[*s} The top program,
Kaplan, earned a total of $408, §14 higher than the second place program of
Ringuette. The gaps separating third, fourth, and fifth place were $7.45, $10.51 and

R8iThe NN program of Dallaway and Harvey was disqualified from the March 1990 tournament
because it consistently incurred large losses. The authors submitted a revised version for the
subsequent scientific tournament which performed satisfactorily.
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TABLE 2 Taxonomy of DA trading programs.

—
Author/Nickname Institution F L CASPO CPU
Anon-l Anonymous cCs C. 2- 1. 86
Anon-2 Anonymous Cs- C- 3 - 1 - 89
Jacobson Carnegie Mellon CS C - 3 X 1 - 86
Ringuette Camnegie Mellon "CS € - 2 X 1 - 85
Golden Buflalo Colorado E C - 2 X 2 - 88
Silver Buffalo Colorado E C - 2X 2 - 88
Lin Portland State E cC - 2 X1 - 89
Perry Portland State M C- 3X2- 88
Anderson Minnesota E Cc - 2 1 - 88
Breton Minnesota E c- 3X1- 88
Bromiley Minnesota MK F - 2 1 - 90
Kaplan Minnesota E C - 3 1 - 86
Pricetaker SFI EM C - 2 X1 - 88
Skeleton SFI EM C - 2 X 1 - 84
Truthteller SF1 EM C - 1 1 - 84
Zl SF1 EM P - 1 X 1 . 82
Exp Arizona ESL E C- 2 2.- 86
Free Arizona ESL E c - 2 2 - B7
Gamer Arizona ESL E C - 1 I - B4
Max Arizona ESL E C X 2 2 X 157
Max-R Arizona ESL E CcC X 2 2 X 261
Slide Arizona ESL E C- 2 X 2 X 98
Terminator Arizona ESL E c- 2. 2. 89
- Boleer UC Irvine s P - 2. 2. 86
Burchard Princeton I1AS M C X5 X2 X 9
Dallaway/Harvey Sussex Cs C X5 - 1 X 91
Kennet/Friedman Tulane/UCSC E PX2- 2X 18
Kindred Duke CsS C- 2 X1 - 8
Ledyard/Olson Cal Tech E C X 3 X 2 - 187 -
Leinweber MJT Advisors B C - 2X1 - 87
Lee British Columbia CS € - 2 X 1 - 88
Staecker Western Ontario CS C 3 - 2 X 88
Utgoff Massachusetts Cs C - 2 X 2 - 86
F - 3 - 2. 88

Wendrofi/Rose Los Alamos N M

Legend: F Field—B = broker, C5 = computer science, E = economics, M = math, physics, MK = marketing.

L Programming Language—C, F = Fortran, P = Pascal,

C Complex—X if program is “complex™ as defined in Rust, Miller, and Palmer.?®

A Adaptive—5-jeve} ranking defined in Rust, Miiler, and Palmer®™: ] = least adaptive, § = tnost adaptive,

S Swchastic—X if program makes use of random number generator.

O Optimiring—X if program uses an explicit optimization principle.

P Predictive-—3-level ranking defined in Rust, Milles, and Palmer™: 1 = doesnt predict, 2 = predicts snarket variables.
CPU Ratio of CPU time consumption 1o average for all programs.
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TABLE 3 Dollar Payoffs in March 1990 Double Auction Tournament.
Trading program Ovarall BASE BBBS BSSS5 LAD EQL PER RAN SHRT SML TOK

Kaplan 408 42 42 41 43 42 44 41 42 33
Ringuette 394 41 37 40 45 38 40 37 37 46
Staecker a7 41 39 37 43 36 41 35 38 42
Anon-2 316 a3 36 40 40 39 33 34 35 46
Ledyard 367 34 38 a7 38 36 36 38 37 41
Perry 366 3 41 36 40 36 32 38 35 40
Breton 360 35 33 37 36 a7 35 37 37 40
Anderson 358 33 39 38 34 37 31 36 35 a9
Anon-1 354 36 a7 35 36 35 ar 35 35 32
Burchard 344 34 35 34 34 34 35 39

Terminator 342 35 27 40 36 34 36 33
Golden Buffalo 340 34

RRE2E SBBHEREY BEHEER 8 8 8 8
b4

35
Lee 337 33 34 32 3% 3 35 37 8 27
Leinweber 333 34 34 32 3 36 32 36 34 22
Silver Buffalo 330 3 36 32 33 38 36 33 25 37
Slide 330 35 34 32 34 33 36 32 32 28
Jacobson 329 34 28 34 31 3r 31 32 30 39
Bromiley 316 32 31 33 30 33 3/ 3 2B 32
Max 299 31 32 33 36 28 32 25 32 34
Max-R R4 28 34 29 31 27 30 26 28 35
Utgoff 286 32 26 25 32 3 32 25 28 23 23
Kindred 271 30 24 33 32 3¢ 1N 3w z7 25 4
Free 242 27 32 21 23 2 2 w77 22 17
Gamer 230 25 20 22 24 24 25 21 25 21 22
Wendrefl 228 25 20 21 2D A 23 26 25 15 25
Lin 224 21 20 23 22, 25 17025 25 19 27
Exp 210 16 17 23 26 26 20 11 14 23 34
Kennet 164 16 & 14 23 14 9 2r 17 12 23
Bolcer 148 13 19 8 18 17 6 16 13 10 18
Total $8967 857 881 898 945 928 903 893 BTG  B47 905
Surplus $10000 1000 1000 1000 1000 1000 1000 100C 1000 1000 1000

$8.63, respectively. While these differences in earnings may not seem economically
significant, they are statistically very significant. Kaplan’s earnings are over 2.5
standard deviations higher than Ringuette’s second place earnings, and the gaps
separating first from second, third, and fourth places are 3.8, 5.6, and 7.1 standard
deviations, respectively. The average standard deviation in profits of $5.75 was only
slightly higher than the $5.40 standard deviation in surplus allocations, calculated
over 3,360 individual periods of play in the ten environments. Recall that our proce-
dure for generating tournament games guarantees that the token endowments of all
traders are identical with probability 1. Given the large number of periods of play,
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an appeal to the law of large numbers allows us to be very confident that differences
in traders’ earnings reflect true differences in profitability rather than randomness
due to player matchings and stochastic elements in the programs themselves.

"The player rankings are also highly consistent across the ten environments. The
average Spearman rank correlation between overall tournament payofls and payoffs
in each of the ten environments is 77%, ranging from a high of 95% in environment
SML to a low of 72% in environment TOK. Kendall’s W-statistic, which measures
the degree of concordance in all the rankings, is highly significant at 79%, allowing
us to easily reject the hypothesis that player rankings in different environments are
independent. It is striking that Kaplan’s program took first place in seven out of
ten environments, coming in second place in environment EQL and third piace in
environment SHRT. The only place where Kaplan's program did not do well was
the environment TOK where traders were endowed with only & single token. At the
bottom end of the spectrum, the BGAN (Bayesian game against nature) program
of Friedman and Kennet was consistently one of the worst performers in all ten
environments, With earnings of $164.30, the BGAN is over ten standard deviations
below the earnings of the next highest competitor.i27

While we are very confident of our ability to distinguish the best and worst
programs, we are much less confident about the relative rankings of the middie
group of programs. One can see from Table 3 that after the large gaps separating
the fourth and ffth place entries' {(Anon-2 and Ledyard-Olson), the differences in
payofis of the next group of programs are within one standard deviation of each
other. The next significant difference in payoffs is a $10 gap separating the ninth
place entry of Anon-1 from the tenth place entry of Burchard. Even after 3360
periods, it’s clear that we would need many more observations to be confident of
the relative rankings of programs between fifth and ninth place. In general, it’s
impossible to make any reliable performance distinctions if we can only observe
traders over a small number of periods. The average dollar earnings of 9.4 cents per
period of play is dominated by the per-period standard deviation in profits of 10.0
cenits. Most of the latter variation is attributable to the 9.2 cent standard deviation
in surplus arising from traders’ random token endowments. Thus, a computerized
irading environment is virtually a necessity if one wants to reliably discriminate
good traders from bad. It appears that it would be infeasible to make the same
sorts of distinctions in markets with humah traders given that it takes hundreds or
even thousands of periods of play before one can be sure that differences in relative
performance are statistically significant.

Total tournament payouts at the bottom of Table 3 provide a convenient mea-
sure of trading efficiency, since conversion ratios from token profits to dollar payofis

{2 BGAN may have suffered as a result of problems converting the program from PC Turbo
Pascal to Sun Pascal. Although the converted program compiles without error, there were erors
in several subroutines that generated under- and overfiow errors at run time suggesting a possible
incompatibility in its calls to certain functions. The low dollar ranking of the program of Bolcer
should be disregarded since the program was only programmed to play the role of seller. In terms
of dollar payoffs per game played, Bolcer’s program is about equivalent in performance to the
programs Maz and Terminator which placed 18th and 20th in overall earnings.
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were based on realized surplus rather than on realized profits. Thus, the total dollar
payouts of $8,967 correspond to an 89.7% efficiency ratio.! Efficiency was highest
-in the environment LAD, where fixed supply and demand curves were shifted by
a random constant in such a way as to always yield a unique equilibrium price
and quantity, and in EQL where traders where given symmetric token endowments
{shifted by a random constant). However, the learning problem in both of these
environments is nontrivial since traders were not given any prior information- on
the distribution of token values (i.e., gametype was set equal to 0), and therefore
had no way of knowing that they had equal tokens or that there would be a unique
equilibrium price and quantity.

It is probably also not a surprise that the least efficient environment was SML
where there were only two buyers and two sellers. Human experiments reveal that
the competitive properties of the DA market start to break down when there are
so few traders.!?®. The SML environment is but a step away from the most extreme
situation of bilateral bargaining, which (when time constrained) is known to have
inefficient outcomes owing to a high frequency of disagreement. The increased {re-
quency of disagreement in the SML environment shows up in the distribution of
trader’s profits: even though surplus endowments are 0 only 5% of the time, traders
walk away with O profits over 20% of the time. Other environments with refatively
low efficiencies include SHRT (where there was a time constraint on trading) and
BBBS and 13555 (duopoly and duopsony rmarkets, respectively).

Overal’ -fiiciency levels appear to be somewhat lower than that observed in the
later period: -/ experimental markets with human traders. We suspected that the
low-trading eii: .+=:aes of the bottom ten programs were responsible for most of the
aggregate inefficiencies, suggesting that running a tournament that excluded these
programs would result in a more “realistic” and efficient market. Before doing so, we
gave all entrants an opportunity to revise their programs in light of the resuits of the
March 1990 tournament. A second series of scientific tournaments were conducted
in May, 1881 with seven revised entries.|3® The scientific tournament also included
several new programs written by the authors, including Skeleton, Pricetaker, and
ZI.

128} Payouts are net of profits earned by a Skeleton “stand-in" for the programs of Dallaway-Harvey
and Boleer which only played the roles of buyer and seller, respectively. If we were Lo include profits
earned by Skeleton, aggregate market efficiency would be slightly higher.

lzglAlt.htaugh perhaps not as badly as we might have expected, a priori. See Clauser and Plott,”
chapter 12 of this volume.

136] We received revised entries from Dallaway-Harvey, Ledyard-Olson, and Perry, and four revised

entries from the Arizona ESL group, Maz, Maz-R, Slide, and Terminator.
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4.2 RESULTS OF SCIENTIFIC AND TOP 17 TOURNAMENTS

Overall player rankings in the “scientific tournament” were quite similar to the orig-
inal tournament. Aggregate efficiency increased slightly from 90% to 92%, ranging
from a low of 88% in SHRT to 95% in EQL. Once again the programs of Kaplan
and Ringuette were the clear winners, with Kaplan’s program trading at an overal}
efficiency level of 121%, significantly higher than Ringuette’s efficiency of 116%.
Staecker’s program, trading at an efficiency level of 108%, came in third place just
as in the original tournament. Two independent copies of Skeleton placed fifth and
eighth place, which is somewhat surprising given that Skeleton was provided to all
participants in advance of the tournament and thus should have represented a fairly
easy target to beat.’®! On the lower end of the scale, the programs Gamer, Ezp,
and Lin—which were among the poorest performers in the original tournament—
remained the poorest performers in the scientific tournament, trading at an average
efficiency level of under 70%. ZI also performed quite poorly trading at an efficiency
level of 75%, confirming our discussion in Section 2. The revised neural-network
trader of Dallaway and Harvey performed somewhat better than ZJ, trading ex-
clusively in the role of buyer at an efficiency level of 85%. Pricetaker turned out
to be the median trader at rank 17 with an average efficiency level of 95%. This
is somewhat below the 100% efficiency ranking we would have expected for our
implementation of a naive pricetaking strategy.

In order to see whether the leading position of Kaplan and Ringuette is a result
of general superiority or merely a relative superiority in their ability to exploit
the lowest ranked traders, we ran a third tournament consisting of the top 17
players from the scientific tournament. The results of the “Top 17 tournament are
summarized in Table 4. We see that once again, Kaplan and Ringuette remain the
leaders even after elimination of the lowest ranked traders. Ringuette does slightly
better than Kaplan in terms of overall earnings, although the difference is not
statistically significant.®? Kaplan’s program comes in first place in five of the ten
environments whereas Ringuette’s program is first in four environments, and the
two programs are tied for first place in environment SML. The fact that Kaplan
and Ringuette were able to maintain their high efficiency ratios in this tighter, more
competitive market suggests that they are, in fact, generally superior to all of the
other programs,

The only program that improved significantly in the Top 17 tournament was
Anderson, which moved from twelfth place to fourth place. The trading efficiencies
of the remaining programs generally declined significantly, especially Staecker, Lee,

BUTwo copies of Skeleton were included in the scientific tournament as a further check on the
statistical reliability of our ranlings. The relative performance of the two copies is rather close in
all environments except TOK, where the two copies traded at efficiency levels of 41% and 84%,
respectively.

B2 Note that overall earnings in the scientific tournament were computed by summing token profits
as opposed Lo dollar earnings in the March 1990 tournament. This change in implicit weighting
scheme may account for the change in overall rankings of Kaplan and Ringuette.
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TABLE 4 Trading efficiencies in the *Top 17" tournament.

Trading program Overall BASE BBBS BSSS LAD EQL PER RAN SHRT SML TOK

Hinguette 117 121 103 116 120 113 119 120 91 126 130
Kaplan 114 110 109 122 103 120 129 111 118 126 118
Anon-1 108 i09 110 110 111 108 103 106 113 117 109
Anderson 105 100 104 102 115 106 104 103 102 107 101
Staecker 101 111 103 107 g9 103 108 96 97 117 1286
Burchard 101 94 92 92 91 107 84 112 95 Bl 84
Perry 98 103 104 100 G7 106 106 95 B7 91 97
Anon-2 q7 9% 102 98 108 95 93 93 88 107 14
Lee 96 90 88 81 96 105 90 101 88 a0 88

Ledyard/Olsor 96 90 90 ag 98 104 94 97 90 96 103
Golden Buffalo 94 §0 94 88 101 91 91 97 81 BO 118

Breton g2 102 94 91 94 92 98 91 81 94 105
Leinweber a0 86 83 38 8 B9 BY 98 B85 67 33
Skeleton 8G 91 89 78 89 100 84 493 93 62 39
Jacobson &9 a7 91 g2 96 80 87 87 B8R 94 104
Silver Bufiale 8 87 84 74 8 61 81 79 80 71 102
Pricetaker Ti 81 81 as 77 68 87 57 87 98 96
Market 97 98 85 96 98 89 97 496 92 g6 gOR
- _

Skeleton, Breton, and Pricetaker. However, despite these declines, average market
efficiency increased to 97%. The latier efficiency levels are as high as efficiency
levels observed in comparable human experiments. Indeed we found that when we
participated as human traders in the Top 17 market, it was difficult to consistently
trade at higher than 100% efficiency, whereas we found it relatively easy to con-
sistently trade at higher than 100% efficiency in markets that included the lowest
ranked trading programs. This suggests that the Top 17 market may serve as a
good working model of a “competitive market” such as observed in experimental
markets with human traders.

4.3 AGGREGATE BEHAVIOR OF COMPUTERIZED TRADERS: SOME
“STYLIZED FACTS”

A more detailed analysis of tournament results reveals that the top-ranked trading
programs do in fact yield a fairly realistic working model of a DA market in the
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sense that their collective behavior is consistent with the following stylized facts of
human DA markets: (1) convergence to CE, (2) high ez post efficiency levels, 3)
reductions in transaction-price volatility and efficiency losses in successive trading
periods reflective of apparent “learning” effects, {4) coexistence of extra-marginal
and intra-marginal efficiency losses, (5) low-rank correlations between the realized
order of transactions and the “efficient” order, and {6) negatively autocorrelated
transaction-price changes. Even in markets that include the less efficient, lower-
ranked traders, transaction-price trajectories appear to be very similar to those
observed in human markets. Indeed, we typically find that transaction prices and
quantities converge close to the CE in the very first trading period.

Figure 3 shows a typical outcome, game BASE012 of the scientific tournament,
The figure plots the induced supply and demand curves and the transaction price
trajectories in each of the three trading periods. All three trajectories converged to
the CE, generating nearly 100% efficient outcornes. In this case the market traded at
100% efficiency in the first trading period, compared to 98% in the second and third
periods. Despite the high er post efficiency, the rank correlation coefficient between
the order of the buyer’s and seller’s trades and the “efficient order” is very low,
corresponding to what we observe in human experiments. For example, the rank
correlation for buyers and sellers in period 1 is 60% and 48%, respectively, falling
to just 10% in period 3. The information in the right border of Figure 3 shows the
times and traders involved in each transaction made in period 3. For example, the
Ist token was traded in BS step 3 when buyer B3 accepted the offer of seller 84
(at a price of 429), and the eighth token was traded in BS step 51 when buyer B2
accepted the offer of seller S1 (at a price of 436). If trades were made in the efficient
order as predicted by Wilson’s WGDA theory described in section 2, then the first
token should have been traded by B2 and S84 and the eighth token should have been
traded by B2 and $2. The automata traders frequently trade extra-marginal tokens,
something that is commonly observed in human experiments but is also ruled out
by game theoretic models such as Wilson’s WGDA. For example, in Figure 3 we
see that in period 3 buyer B4 succeeded in buying three tokens, “bumping” buyer
B1 who only succeeded in buying one token (in an efficient allocation, each buyer
and seller trade their two most valuable tokens). As a result, the traders failed to
exploit 27 units of potential surplus in period 3.133

For comparison, Figure 4 presents typical price trajectories in a market with
100% ZI traders. The nature of the ZI strategy implies that transaction-price se-
quences in successive periods are //D, so these traders cannot exhibit the type
ol learning behavior that is characteristic of human DA markets, It is evident that

#3: The four-way decomposition of lost surplus, EM, IM, BS, and S5 on the right-hand border of
Figure 3 is explained in Section 4.4 and the appendix. The left border of Figure 3 presents other
statistics on the trading process, broken out by peried. These include the correlation coeffcient
of transaction-price changes (C), ex post efficiency (E), time of last transaction {T), Spearman
rank correlations of the order of the transactions with the efficient order for buyers (B) and sellers
{8}, and the maximum and average absolute percentage deviation of transaction prices from the

midpoint equilibrium price (A}, {(M).
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TABLE 5 Summary statistics for successive trading periods, P1, P2,-and P3.

—
Statistic Top 17 Traders All Traders Z| Traders
{standard deviation) 2327 Games 4274 Games 2295 Games
PL P2 P3 P1 P2 P3 P1I P2 P3
BRANK 47.8 464 46.0 485 469 46.5 57.6 574 56.6
(9) (6) (9)
SRANK 48.0 475 47.2 489 4BR8 485 531 522 525
) (6) () (9)
CORRCHG 960 -24.0 -23.9 209 -27.9 -27.2 -481 466 474
(1.1) (.8) (1.0}
COEFVAR 81 65 62 107 87 86 127 127 127
(:2) (1 (2)
DEV, MAX 19.1 154 146 234 198 194 271 270 272
(-3} (-3) (:5)
DEV, AVERAGE 42 5 07 =71 -1.24 -1.20 323 346 3.17
(.22) {.18) {.22)
DEV, LAST 21 .23 002 -03 -68 -59 .73 115 .60
{19} {.18) {.24)
ABS-DEV, AVERAGE 99 80 7.7 114 89 87 11.9 12.0 11.8
(2 (2) (2)
ABS-DEV, LAST 50 46 44 66 635 65 67 68 69
(2) (2) (2)
HIT RATE 935 9263 27.2 185 187 189 19.0 180 187
(:9) (6) (8)
HIT RATE 2 488 523 532 386 392 394 369 366 376
{1.0) 7N (7 (1.0)
HIT RATE & 570 624 626 482 494 486 523 514 512
©(10) (8) (8) (1.0)
HIT RATE 10 826 862 B68 77.0 76T T6.B 824 811 812
(7) (8) (6) (8)
PCT2ND 402 343 334 276 261 257 57 57 B8
(4) (:3) (2)
EFF, AV g4.8 067 0969 006 911 915 97.0 97.0 869
(1) (3) (1)
EFF, TOTAL g5.6 968 97.0 923 921 91.8 879 978 8§79
. TR
Legend: BRANK Rank 1 of buyers' & jons with mmrexmmmh-m.ea.qm,.e@.ﬁ
ot orber mmm:!mmmm;eiﬂwaeiﬂgdm
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overall transaction-price volatility is significantly higher for ZI traders in all periods,
The zig-zag pattern of transaction-price trajectories implies serial correlation coef-
ficients in the neighborhood of -50% predicted by Cason and Friedman.t F inally,
notice that ZI traders are very impatient: they complete all their transactions in
the first third of the trading period.

The behavior displayed in Figures 3 appears qualitatively similar to outcomes
. of human experiments. To demonstrate that these examples are not atypical, Table
5 presents an array of trading statistics averaged over all tournament environments.
In order to highlight learning effects, we break out the statistics by trading period.
To help put these statistics in perspective, we also present results for a tournament
with 100% ZI traders.

Table 5 suggests that the Top 17 traders exhibit significant inter-period learning
eflects: as we move from the first period (P1) to the last (P3) we see that trading
efficiency increases, the fraction of price trajectories hitting the CE target increases,
and price variability decreases (whether measured by the coefficient of variation or
by the percentage deviation from the midpoint equilibrium price}. The only statis-
tics that show no systematic improvement in successive periods are the rank corre-
lation coefficients of buyers’ and sellers’ transaction sequences vis-a-vis the efficient
trading order and the serial correlation coefficient for transaction-price changes. The
rank correlations for the Top 17 traders are significantly less than the values for ZI
traders and less than the 100% predictions of Wilson’s WGDA theory, but are some-
what above the
0-30% range for the human experiments analyzed in Cason and Friedman.6 The
autocorrelatio:. = iransaction-price changes for the Top 17 traders averaged -25%
which is significantly less than the -50% value for ZI traders and the 0% value
predicted by the WGDA theory, but roughly consistent with the values reported in
Cason and Friedman® for experienced human subjects.®4 In terms of efficiency, the
Top 17 and ZI markets are roughly comparable at 97%, which is actually somewhat
higher than the 93% average efficiency for DA markets with inexperienced subjects
reported in Cason and Friedman,® but roughly comparable to the 97.8% average
efficiency in first five periods of DA experiments with experienced subjects reported
in Table 2.d of McCabe, Rassenti and Smith. =

Learning effects are much less pronounced when we include the lowest ranked
trading programs and, of course, are completely absent in markets with 100% ZI
traders. Notice that while ZI traders attain the highest efficiency levels, price volatil-
ity (measured by any of the statistics in the second panel of Table 5) is significantly
higher than the Top 17 traders. ZI traders are noticeably less patient, exchanging
only 6% of their tokens in the second half of the trading period compared to over
33% for the Top 17. The statistics on the “hit rates” show that despite the high
efficiency of ZI markets, less than 20% of all price trajectories actually converge
to equilibrium, compared to nearly 27% in the third period in comparable markets

¥4I Cason and Friedman Teport autocorrelations of -50% for inexperienced subjects, suggesting that
trader experience tends to push autocorrelations towards 0%, although the resuits are inconclusive
since they are based on a relatively small number of observations.
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with Top 17 traders. If we widen the target slightly and count any price trajectory
- that is within 5% of the equilibrium price interval, then the hit rate increases to over
60% for the Top 17 traders compared to just over 50% for the ZI traders. Hit rates
for all traders in the scientific tournament are slightly lower than the ZI traders.

TABLE 6. Analysis of Efficiency Losses.

P
Case Scientific Tournament Top 17 Tournament
- Environ- Period %cost EM MM SS BS %cost EM IM SS BS
ment Surplus Surplus

BASE 1 93.7 101 358 173 36.8 87.0 35.8 33.7 132 17.3
2 934 8.6 43.0 124 349 978 41.0 31.0 122 159

3 934 102 414 139 245 898.2 49.0 194 144 172

BBBS 1 91.2 42 452 21 485 93.7 100 531 4.8 321
2 90.3 3.2 487 21 4598 959 13.7 437 4.1 385

3 806 3.2 474 20 474 95.9 13.8 342 49 471

BSSS 1 91.3 0.8 550 420 22 842 6.8 365 50.v 6.0
2 922 0.7 51.0 461 2.2 96.0 9.6 134 704 66

3 916 03 57.0 413 1.5 96.0 11.1 16.0 675 54

EQL 1 948 00 829 57 115 983 0.0 531 26.0 208
2 948 00 8937 32 71 988 0.0 50.0 24.3 257

3 95.1 0.0 893 42 6.5 8988 00 508 197 295

LAD 1 940 8.8 56,6 13.8 208 97.8 21.0 262 286 24.2
2 939 64 534 186 216 983 234 172 26.2 332

3 93.7 62 53.% 16.8 231 984 2905 14.3 255 307

RAN i 918 21.0 308 169 31.3 95.6 44.2 133 205 22.0
2 91.5 14.6 36.7 114 373 96.4 499 13.2 149 221

3 868 11.6 385 10.6 39.3 96.6 526 159 124 19.1

SML 1 91.1 7.8 727 891 104 93.0 83 69.2 169 55
2 91.3 79 725 7.6 119 96.3 159 500 246 9.3

3 908 6.8 740 6.7 124 87.1 163 43.7 235 163

TOK 1 95.0 117 8.5 14 1.3 975 0.0 957 23 20
2 832 29 956 05 1.0 98.1 0.0 942 58 0.0

3 940 23 963 05 049 982 0.0 959 27 14

SHRT 1 883 32 627 114 2286 893 4.5 705 155 95
2 B8.1 3.0 626 106 23.8 9298 45 705 128 117

3 B7.6 25 64.5 103 228 934 64 671 153 11.2
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The other major- difference between ZI and the Top 17 traders is that the rank
order correlations of the trading sequences are significantly higher, and the serial
correlation coefficient of transaction-price changes are significantly more negative.

‘We are presently collecting detailed data sets that will allow us to go beyond
the simple stylized facts outlined above and conduct more precise statistical com-
parisons of the behavior of human and computer traders. Our conjecture is that
humans will display much more dramatic inter-period learning effects than the
Top 17 programs. It is also probable that we will find significant differences in the
stochastic properties of price trajectories in later periods of the game, as well as
differences in the timing of bids, asks, and transactions.

4.4 ANALYSIS OF DA EFFICIENCY LOSSES

One of the stylized facts of human DA markets is that a major fraction of efficiency
losses are due 1o trades of extra-marginal tokens. In order to quantify the magnitude
of these losses, it’s useful to distinguish between four types of inefficiencies that can
occur in DA markets:

IM: value of lost surplus of non-traded intra-marginal tokens (i.e., those that lie
10 the left of the equilibrium quantity, g*) when the actual number of trades
g is less than ¢” (0 otherwise).

EM: value ¢f tnst surplus due to trade of extra-marginal tokens (i.e., those that lie
tothe iz «f ¢* on the supply and demand curves) when the actual number
of trades ¢ 15 greater than ¢° (0 otherwise).

BS: value of lost surplus due to trades of extra-marginal buyers’ tokens that dis-
placed potential trades of an equal number of buyers’ intra-margina! tokens.

8S: wvalue of lost surplus due to trades of extra-marginai seller’s tokens that dis-
placed potential trades of an equal number of seller’s intra-marginal tokens,

Table 6 presents an “inefliciency audit” that summarizes this four-way de-
composition of efficiency losses. The last column of each section of table presents
the ratio of total profits to total surplus in each period of play, and the remain-
ing columns present a percentage breakdown of iost surplus due to each of the four
sources, EM, IM, S5, and BS. In general, the audit reveals that total extra-marginal
efficiency losses—the sum of EM, 88, and BS—constituted a substantial fraction of
total efficiency losses in all environments except TOK. As noted above, this find-
ing is consistent with the results of human experiments that show that efficiency
losses are frequently a result of trading tco many tokens rather than too few to-
kens. Extra-marginal efficiency losses were identically zero only in the EQL and
TOK environments. In EQL this result is to be expected given the nature of the
token distribution which resulted in supply and demand curves with large steps,
each four units wide, a unique equilibrium price, and a four-unit range of market-
clearing quantities. In the single token TOK environment, if an EM efficiency loss
oceurs, it is more likely that some trader has taken a loss on a transaction. We
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can see that in the scientific tournament EM losses in the TOK environment are
nonzero, reflecting the fact that some traders (principally the programs Free and
Kindred) were trading at a loss. Once these lower ranked programs ‘were rernoved
in the Top 17 tournament, EM efficiency losses were virtually eliminated.

Overall, Table 6 shows that the largest single source of inefficiency is IM, indi-
cating that generally too few rather than too many tokens were traded. This effect
is most noticeable in environments TOK and SHRT. Such a result is to be expected
for the SHRT environment due to the small number of trading steps. However, the
large value of IM in the TOK environment is surprising, given that one would expect
it would be much easier to trade a single token instead of four.®! Intra-marginal
efficiency losses were also large in the duopsony and duopoly environments BSSS
and BEBS. In BBBS this may possibly reflect sellers’ attempts at “collusion” in
order to restrict output in an attempt to share joint monopoly profits. Note, how-
ever, that the other large source of efficiency losses is due to excessive competition
on the long side of the market. Thus, in environment BSSS where there are three
sellers for each buyer, the large value of the SS efficiency losses indicate that the
six sellers became engaged in “price wars” as they competed to seli their tokens to
the two buyers. ‘

Table 6 shows that the level of intra-marginal efficiency losses are typically
significantly lower in the Top 17 tournament, reflecting the fact that the majority
of the lower ranked trading programs did poorly as a consequence of failing to trade
all of their potentially profitable tokens. On the other hand, the relatively higher
levels of extra-marginal efficiency losses in the Top 17 tournament provide another
indication that this is indeed a relatively more competitive and aggressive market.

4.5 RESULTS OF THE “EVOLUTIONARY TOURNAMENT”

A limitation of the previous tournaments is that trading programs were not al-
lowed 10 play against themselves. In order to provide a simple model of imitation
and growth processes, we decided to conduct an “evolutionary tournament” based
on ideas from evolutionary biology.>2236! The idea is that in real-world markets
the best traders will attempt te “clone” their strategies in order to gather a larger
market share. These processes will tend to lead to expansion in the number of
traders using eflective trading rules and declines in the number using poor trading

1% This result may indicate possible programming problems if the majority of entrants developed
their programs on the assumption that traders would normally be endowed with four tokens.
Although tournament rules explicitly noted the possibility of single-token environments, all pre-
tournament games run on SFTE involved four-token environments. Entrants may have assumed
that singie-token environments would constitute a negligible share of tournament profits and
focused their attention on the four-token case.

3¢, Actually, from a strict biological perspective, it would be more accurate to call it an “ecological
tournament” since the set of species (trading programs) is fixed and only their relative proportions
are allowed to change over time.
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strategies. However, the changing market composition may also present opportuni-
ties: some trading rules may actually perform better in a tighter, more competitive
market. )

In an evolutionary tournament each trading program is assigned a measure of
“fitness,” and an initial population of programs evolves over time in accordance with
the principle of survival of the fittest. Specifically, let the fitness level of program
tin game ¢ be given by its capital stock K;{). A trader’s fitness evolves over time
according to the law of motion:

Ki(t) = Kt — 1) + () - 5:(2) (4.1)

where Il;(2) is trader i's profit in game ¢, and Si(t) is the surplus (i.e., token
value) assigned to trader ¢ in game ¢. Thus, our measure of ftness corresponds
to trading efficiency: fitness increases when trading efficiency exceeds 100% and
declines otherwise. A real-world interpretation is that traders are buying and selling
shares of stock. In game ¢ the trader purchases shares of stock at an initial cost
of 5;(t), closing out his account at the end of the day by selling off his shares for
II:(t). The competitive hypothesis that price and quantity converge to CE can be
reinterpreted as the “efficient markets hypothesis” that the expected value of end-
of-day heldings I1;(¢} equals the initial purchase price 5(t). However, if markets
are not completely efficient, then superior traders should be able to make positive
expected profits, tending to increase their capital stocks over time.

The concept of survival of the fittest is operationalized by letting the fraction
p;(t) of traders using strategy 7 in game ! be proportional to the relative capital
share of the type 7 traders:

K;(t)
i1 Ki(t)

We might think of Eq.(4.2) as reflecting the Dean Witter philosophy, “one investor
at a time.” Thus, if Dean Witter manages p;(2)% of the stock of investment capital,
then on any given day we would expect that approximately p;(t)% of the traders
in the market will be employed by Dean Witter.

We begin the evolutionary tournament by endowing all traders with equal initial
capital shares, K;{(0) = K, i = 1,...,I1. In a DA rnarket with buyers and M
sellers, we begin the evolution by taking L //D draws (with replacement) from the
population of buyers and M //D draws from the population of sellers to form the
market using the multinomial distribution (4.2). Given a randomly selected set of
traders, we play a DA game from the BASE environment with a randomly selected
set of tokens. After trading is complete, the capital stocks of the [ buyers and M
sellers are updated according to Eq. (4.1), new selection probabilities are computed
according to Eq. (4.2), and a new set of players are drawn for game ¢ = 1. It is
alsc easy to construct a market where a constant fraction of noise traders, say, p%,
enters the market in each game ¢. For each of the L buyers and M sellers in the DA
market, we draw JID Bernoulli random variables with parameter p. If the outcome

ity = 4.2
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of the mth Bernoulli random variable B,, is 0, then the mth seller is selected from
the pool of I “permanent” traders according to Eq. (4.2); otherwise if B,, = 1,
then the mth seller is selected at random from a fixed set of noise-trader programs
{and similarly for buyers).i37

We have not proved any results about the limiting behavior of the evolutionary
tournament such as whether or not the limiting set of traders form a steble set
along the lines of Maynard Smith’s notion of “evolutionary stable strategies” (ESS).
Indeed, it is not even clear that one can define the precise conditions under which
the evolution of capital stocks constitutes an ergodic stochastic process. It is easy
to see that in the case of a closed market with no inflow of noise traders, the
aggregate capital stock is indeed an ergodic stochastic process: any market with
nonzero efficiency losses must eventually hit an absorbing state of zero capital with
probability 1. However, our computer simulations suggest that the J—dimensional
stochastic process of capital shares is non-ergodic. Indeed, our computer simulations
indicate that the long-run outcome of competition among our fixed set of trading
programs is unstable; i.e., the stable set is empty.

Figures 5 and 6 clearly illustrate this result in the case of an evolutionary
tournament conducted under the BASE environment. We evolved capital stocks
for buyers and sellers separately to test whether there are any asymmetries in the
traders’ performance. All 66 traders (33 buyers and 33 sellers) were equally en-
dowed with an initial capital stock of 80,000. We stopped the tournament after
28,000 games when the buyers’ capital stock had dwindled to less than 8% of its
original value, as can be seen from the line labelled “market” in Figure 5. The strik-
ing feature about both figures is that after about 5,000 games, Kaplan’s program
emerged as the clear leader, dominating both the buyers’ and sellers’ market after
20,000 games. The programs of Ringuette and Staecker have the second and third
largest capital shares, but notice that after 20,000 games their influence began to
diminish, losing out toc the dominant competition of the Kaplan traders. This ef-
fect is especially pronounced among the buyers, and after 22,000 games the capital
stocks of Ringuette and Staecker have been reduced to less than their initial allo-
cations, allowing Kaplan to achieve near total domination of the market. However,
this is precisely when Kaplan’s program began to head into a precipitous decline,
losing more than half of its capital stock in the suceseding 6,000 games.

The reason for Kaplan’s fall is clear: the success of a “wait in the background”
strategy depends on being in a2 market populated with active bidders. If all traders
attempt to try to wait in the background, little information will be generated as each
trader waits for the others to make the first move. By the end of the period, there
will be a trading panic as all traders attempt to unload their tokens. Thus, there

137 There are two ways to handle the profits (or losses) earned by noise traders. One way is to
update capital stocks of the noise traders according to Eg. {4.2), treating them as a subset of
the set of perrmanent traders. This effectively provides a lower bound of p/N on any trader's
participation probability, where N is the number of noise traders. The other way is not to update
the capital stocks for the programs which were selected s noise traders. This latter method may
still indirectly increase the capital stocks of the permanent traders to the extent that they are
able to systematically extract surplus from the noise traders.
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:is a much higher likelihood that the period will expire with unexploited surplus
left on the table. This leads to a sharp {all in agpregate efficiency, precipitating the
market “crash” that is evident in Figure 6.
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This suggests that it cannot be collectively stable for all traders to adopt a “wait

in the background” strategy: doing so creates a serious information erternalily
that prevents the market from converging to CE. However, in Kaplan’s case the
negative impact of the information externality is actually not the primary reason
for his precipitous decline. The primary reason is that his program switches into
“truthtelling mode™ once it succeeds in monopolizing the market. Specifically, if a
long time has elapsed since the last trade, or if time remaining in the trading period
is running out, Kaplan’s program places a bid equal to the minimum of the current
ask and T — 1 where T is the value of the next untraded token. In practice, the
current ask is likely to exceed T — 1 after a long period of inactivity (otherwise the
program would have already jumped in), implying that Kaplan’s program effectively
becomes a truthteller by bidding T—1. Long periods of inactivity—a sign of impasse
between buyers and sellers—are quite likely to occur when at least one side of the
market is dominated by background traders like Kaplan or Ringuette. It follows
that once it succeeds in monopolizing the market, Kaplan’s program necessarily
switches into truthtelling mode.
_ Although truthtelling is a very bad strategy in a market populated by even
slightly smarter strategies {as is clearly evident from the fact that truthteller pro-
vides the lower envelope for the capital trajectories in Figures 5 and 6}, truthtelling
can be collectively stable if all traders adopt it simultaneously since a market with
100% truthtellers is necessarily 100% efficient. Indeed, that is what we found when
we ran a tournament with 100% Kaplan traders in the BASE environment. This sug-
gests that Kaplan’s two-stage wait-in-the-background/truthtelling strategy might
seem like a clever way to gain and maintain a monopoly position.®8 However,
closer examination of Figures 5 and 6 reveal the inherent danger of this approach.
By game 22,000, Kaplan’s program had virtually monopolized the buyers' market,
but it still had not completely monopolized the sellers’ market.# Thus, Kaplan’s
buyers tended to get locked into a waiting game with each other, causing them to
switch into truthtelling made, resulting in a net windfall to the sellers {who were
still predominantly in background mode). This scenario is clearly reflected in the
fact that the steady decline in seller’s capital decelerated after game 22,000, so
that by game 28,000, sellers still had nearly 60% of their initial capital stock. Since
Kaplan’s program dominated the seller’s market, it gained the most, multiplying
its initial capital stock over 12 times to 984,735,

Given the overall similarity in the programs of Kaplan and Ringuette, why does
Kaplan dominate in the long run? Initially, both Kaplan and Ringuette succeed in
exploiting the other programs, as can be seen by their relatively equal capital shares
in the first 5,000 games of the evolutionary tournament. However, once Kaplan

L unlikely that Kaplan designed his program with this idea in mind since the rules for
awarding cash prizes in the March, 1990 tournament are inconsistent with the use of the kinds of
evolutionary tournaments which we subsequently designed.

(3¥|By game 28,000 the top sellers were Kaplan (64%), Stascker (18%), Anon-1 (8%), Perry (7%),
Anderson (6%), and Ringuette {3%). In contrast, Kaplan controlled nearly 98% of the buyers’
capital,
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and Ringuette start to codominate the market, Ringuette’s efficiency levels fall
from nearly 120% to well below 100%, allowing Kaplan to take the lead. It is not
easy 1o identity the precise cause of this outcome, although parts of the reasons
have been discussed in our comparison of Kaplan and Ringuette in Rust, Miller,
and Palmer.® It appears that the principal reason for Ringuette’s decline is that
his program is more impatient to trade than Kaplan’s, switching from the role
of a background trader to an active bidder much sooner than Kaplan does. On
the other hand, when Ringuette’s program encounters a period of inactivity, it
invokes a much more aggressive active bidding strategy than Kaplan, namely a
slightly modified version of Skeleton. However, since Skelefon consistently loses out
to Kaplan when the latter is in “background mode,” it should not be surprising
that Ringuette’s program also loses given that it typically switches to “skeleton
mode” long before Kaplan’s program has switched to truthtelling mode. Specifically,
Ringuette’s program switches to skeleton mode whenever the number of elapsed
steps since the last trade exceeds the smaller of 12, or 60% of the remaining steps
in the game."® In comparison Kaplan’s program switches to truthtelling mode
whenever the number of time steps since the last transaction exceeds one half of
the number of remaining steps, or whenever five steps have elapsed since the last
transaction and the number of steps since his program last traded exceeds two
thirds of the remaining steps. Thus, at the beginning of a DA game dominated by
Kaplan and Ringuette, Ringuette’s program will switch to skeleton mode after BS
step 12 whereas Kaplan’s program will still be playing the role of a background
trader.

In biological terms, our evolutionary tournaments have suggested the following
conclusions: (1) Kaplan’s strategy appears to be able to successfully invade a pop-
ulation of non-Kaplan’s (including Ringuette), and (2) a collection of 100% Kaplan
strategies is not collectively stable. These conclusions suggest that the outcome
of “closed” evolutionary tournaments {i.e., ones that exclude subsequent entry of
noise traders} may be characterized by cycles of “booms” and “crashes” in the pop-
ulations of Kaplan’s. In a boom period, Kaplan’s program invades and overtakes
a population of non-Kaplan’s. However, a crash begins once Kaplan’s program at-
tains a near monopoly, dving off on account of negative information externalities
which cause it to switch into truthtelling mode. In the latter case, Kaplan’s relative
capital share will shrink until a sufficient number of active bidders are present in
the market to enable Kaplan’s program to remain in background sufficiently fre-
quently to counterbalance the losses incurred in truthtelling mode. We conducted
evolutionary tournaments with noise traders and found that only a small fraction of
active bidders—5 or 10 percent—is necessary to achieve stability in capital shares.
However, there is little evidence that any of the other programs can suceessfully
invade a population of Kaplan's that are operating in background mode. Otherwise
we would have observed growtih in their capital shares as Kaplan’s program started

[0} Ringuette apparently also intended to return a bid from skeleton whenever there were fewer
than 1/8 of the total number of steps remaining in the game; however, due to an apparent pro-

gramming error, this option is never invoked.
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to monopolize the market. Except for a slight upturn in Anderson’s capital share
in Figure 6, there is no evidence that this is happening.4! By remaining in the
background, Kaplan’s program is able to capitalize on the mistakes of the active
bidders, lifting its efficiency well above 100% and ensuring its growth while pushing
the active bidders’ efficiency well below 100% and ensuring their decline. The bio-
logical analogy is that Kaplan's program is a parasite that invades and eventually
destroys its host. In the absence of an active bidding strategy that can successfully
invade {or at least coexist) with a population of Kaplan’s, there would appear to
be no mechanism to stabilize the resulting cycles of booms and crashes. However,
given the passive nature of a “wait in the background” strategy, it is difficult to see
how one could exploit it. Since this strategy is essentially parasitic, we might pose
the key open question in biclogical terms: are there strategies and environments
that are resistant to invasion by Kaplanites?

5. CONCLUSIONS

In this paper we have studied the behavior of a collection of computer programs
playing the roles of buyers and sellers in a discretized version of a dynamic double
auction market. One of our objectives was to use this market in an attempt to
understand the operation of the “invisible hand.” We found that despite the decen-
tralized nature of the trading process and traders’ incomplete information about
supply and demand, the transaction-price trajectories of a heterogeneous collection
of computer programs typically converged to the competitive equilibrium, resulting
in allocations that were nearly 100% efficient. Our findings complement. and extend
previous theoretical and experimental insights by Easley and Ledyard,? Friedman,*!
Gode and Sunder,!® and Wilson,*! taking us one step closer to resolving Hayek’s
problem, namely to “show how a solution is produced by the interactions of people
each of whom possesses only partial knowledge.” Specifically, the fact that conver-
gence occurs in markets where traders use simple rules-of-thumb suggests that it is
the DA institution, rather than the rationality of the traders per se, that is respon-
sible for the emergence of competitive outcomes. The DA trading rules, particularly
-the “New York Rules” governing the improvement of standing bids and offers, ap-
pear to act as a “funnel” that guides the uncoordinated actions of a heterogeneous
collection of decision rules towards the CE. Other institutional features, including
the discrete vs. continuous nature of trading process, do not appear to play a signif-
icant role in generating competitive outcomes. In particular, our imposition of the
“AURORA rules” restricting which traders are eligible to accept the standing bid

83 The upturn in Anderson’s share of sellers’ capital sppears to coincide with Kaplan’s monopo-

lization of the buyers' market. Thus, the upturn seems more likely to reflect Anderson's ability to
capture some of windfall gains provided by Kaplan's buyers when they entered truthtelling mode
than Anderson’s ability to successfully invade a population of Kaplan's.
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or ask does not appear to impose 2 significant constraint on trading opportunities
ot prevent the market from converging to CE.

Our second objective was to compare the behavior of human and automata
traders. Overall, we found that the top-ranked trading programs appear to yield a
“realistic” working model of a DA market in the sense that their collective behavior
is consistent with the key “stylized facts” observed in human DA experiments:
(1) convergence to CE, (2) high er post efficiency, (3) reductions in transaction-price
volatility and efficiency losses in successive trading periods reflective of apparent
“learning” eflects, (4) coexistence of extra-marginal and intra-marginal efficiency
losses, (5) low-rank correlations between the realized order of transactions end the
“efficient” order, and (6) negatively autocorrelated transaction-price changes. More
detailed statistical comparisons of human and computer traders will have to await
the completion of matching human experiments to be conducted in our discretized
DA market. The fact that our collection of program traders seem to behave similarly
to human traders may not seem surprising if programmers are merely encoding their
“market intuition” into their computer programs. However, given the complexity of
the DA environment and the sophistication of human intelligence, it is not obvious
that human behavior in these markets can be captured by a few simple decision
Tules.

Our final objective was to characterize the form of eflective trading strategies in
DA markets. We studied a collection of over 30 computer programs ranging in com-
plexity from simple rules-of-thumb to sophisticated adaptive/learning procedures
employing some of the latest ideas from the literature on artificial intelligence and
cognitive science. In order to evaluate the programs, we conducted an extensive
series of computer tournaments involving hundreds of thousands of individual DA
games, covering a2 wide range of trading environments and compositions of trading
partners. To our surprise, a single program emerged as the clear winner in nearly
all of the tournaments and trading environments. The winning program, submitted
by economist Todd Kaplan of the University of Minnesota, was one of the simplest
programs that we studied, and can be characterized as nonadaptive, non-predictive,
non-stochastic, and non-optimizing. The basic idea behind the program is to wait in
the background to let others do the negotiating, but when bid and ask get sufficiently
close, jump tn and “steal the deal.” The program makes no use of prior information
about the joint distribution of token values, and relies on only a few key variables
such as its privately assigned token values, the current bid and ask, its number of
remaining tokens, and the time remaining in the current period. The fact that one
can design an effective trading program relying on only a few sufficient statistics
confirms Hayek’s observation about “the remarkable economy of knowledge that is
required in order to take the right action in a competitive market.”

It appears that the success of Kaplan’s strategy is due to the fact that in an
efficient market, if the current bid and ask are close, then it is likely to be the case
that either (1) bid and ask are close to the. equilibrium price interval, or (2} the
current bid or ask are close as a resuit of a mistake in which one of the holders’
failed to place their bid or ask at a sufficiently favorable price. Kaplan's program
attempts to “steal the deal” by placing a bid equal to the previous asking price, but
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only if it can make a profit at that price. As a result Kaplan’s program tends to earn
at least a normal profit if case (1) holds, and a supernormal profit if another trader
has made a mistake. Since the decision of how much to bid is much more difficult
than the binary buy/sell decision, it is not surprising that mistakes in bidding are
a primary source of poor trading performance. By staying out of the bidding game,
Kaplan’s program is able to avoid making bidding mistakes on its own account
while capitalizing on bidding mistakes of others.

Another reason for the relatively poor performance of the complex, adaptive,
optimizing, and predictive strategies is the inherent difficulty of making accurate
inferences in a noisy marketplace given only a limited number of cbservations on
one's opponents. The randomness in traders’ token endowments is the dominant
source of uncertainty in any particular DA game. The additional variation in profits
induced by mistakes or stochastic elements in the trading strategies is insignificant
in comparison. As a result, one needs a very large number of observations on trading
outcornes to be able to reliably distinguish good traders from bad. It follows that
it is virtually impossible to try to recognize and exploit the idiosyncrasies of one’s
individual trading partners unless one is interacting with the same group over a
very long horizon. The low signal/noise ratio of realized trading profits combined
with the high dimensionality of the space of possible trading histories and trading
environments implies that programs based on general learning principles {such as
neural networks and genetic algorithms) require many thousands of DA training
games before they are able to trade even semi-effectively.[? Nearly all of the top-
ranked programs were based on a fixed set of intuitive rules-of-thurnb that encoded
the programmer’s prior knowledge of trading process. This finding suggests that
our hopes of using computerized agents endowed with general principles of artificial
intelligence to evaluate alternative institutional designs may be too ambitious.

Given the simplicity, robustness, and eflectiveness of the “wait in the back-
ground” strategy, it seems likely other traders would attempt to imitate it, leading
to growth in the relative numbers of these sorts of background traders. On the other
hand, less profitable traders should gradually exit the market due to competitive
pressures. In order to study the long-run equilibrium of such market, we conducted
an “evolutionary tournament” in which the fraction of each type of trader was
proportional to its share of the total capital stock. The capital of each trader was
updated after each DA game, increasing or decreasing by the difference between
realized profits and the trader’s surplus allocation in the game. Thus, the capi-
tal stocks and relative numbers of each type of trader grew or shrank depending
on whether it traded at greater than or less than 100% efficiency. Starting from
equal initial capital endowments, the background traders succeeded in exploiting
and driving out the active bidders, nearly monopolizing the market. However, the
background traders create a negative “information externality” by waiting for their

12ig quote from the entry by Dallaway and Harvey: “Given that we are doing the equivalent
of evolving monkeys that can type Hamlet, we think the monkeys have reached the stage where
they recognize that they should not eat the typewriter. If we could have a four billion year time
extension before handing in the entry, we are completely confident of winning.”
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opponents to make the first move. If all traders do this, little information will be
generated and the market would be unable to function efficiently. In order to avoid
such a deadlock, Kaplan’s program defaults to a “truthtelling” bidding strategy if a
sufficiently long time has elapsed since a trade has occurred. Although a collection
of 100% truthtellers is necessarily 100% efficient, it can be easily exploited by even
slightly more sophisticated strategies.

The long-run stability of this market depends on whether it is open or closed to
new entrants, A closed market tends to be unstable, exhibiting cycles of booms and
crashes in the population of background traders. In a2 boom period the background
traders invade and overtake a population of active bidders. A crash begins when
the background wraders achieve a near monopoly, beczuse the negative information
externalities that they create cause Kaplan’s program to switch into truthtelling
mode. Only in a knife-edge case where Kaplan's traders are able to simultaneously
maonopolize both sides of the market is a stable equilibrium achieved with 100%
truthtelling. But the background traders will typically succeed in monopolizing one
side of the market before the other, resulting in its precipitous decline as a result of
systematic exploitation by the background traders on the other side of the market.

However, in an open market, active bidding by a steady flow of short-lived noise
traders succeeds in stabilizing the pattern of booms and crashes in the number of
Kaplan traders. Only a small fraction of noise traders, comprising less than 10% of
the market, is necessary to keep Kaplan’s traders in background mode sufficiently
frequently to counterbalance the losses they incur in truthtelling mode. Kaplan’s
traders make up at least 90% of the market in the long run since the growth of a
competitive fringe causes Kaplan’s traders to shift into background mode, exploiting
and eventually halting the growth of the fringe.

Although the noise traders facilitate long-run stability in market shares, the
limiting market is still quite unstable in other respects. In particular, transaction-
price volatility is unrealistically high-~a consequence of the fact that the Kaplan
traders are frequently in truthtelling mode. It is unlikely that this situation could
persist in the presence of truly adaptive traders, since they would eventually dis-
cover best replies that exploit the fact that Kaplan’s program eventually switches
into truthtelling mode. Since the trading programs submitted to our initial DA
tournament were designed to do well in a sequence of short-run encounters with
heterogeneous opponents rather than in long-run interactions with homogeneous
opponents, it is not surprising that none were successful in exploiting this particu-
lar idiosyncrasy.

The open guestion is whether strategies exist that are capable of dominating
Kaplan’s “wait in the background” strategy over a nontrivial range of environments.
If we were to run another DA tournament,+it seems likely that entrants would
attempt to beat Kaplan by developing more sophisticated delay and “endgame”
strategies rather than reverting to truthtelling mode after a fixed amount of time.
Thus, even though Wilson’s WGDA equilibrium appears to be inconsistent with
the behavior of humans and computer programs, we view our results as confirming
the importance of his insight on the role of delay as a key ingredient of an effective
trading strategy. The main complicating factor is that traders generally don’t have
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any prior knowledge about the strategies used by their opponents, and it may be
very difficult to learn those strategies unless one is interacting with the same group
for a very long period of time. If this is the case, then simple rules-of-thumb such
as Kaplan’s may enable one to capture the key features of an effective strategy in
a anonymous market consisting of short-run encounters with heterogeneous {and
impatient) opponents, whereas more complicated adaptive/learning procedures may
do better in 2 market where one repeatedly trades over a long period of time with a
fixed set of opponents. In future work we plan to investigate whether one can develop
hybrid rules that grafi adaptive/learning procedures onto simple, effective rules-of-
thumb, using the rule-of-thumb as a fall-back, but creating the possibility that it
might be improved in light of trading experience.i43 Our hope is to characterize
strategies that are undominated over a broad range of environments and consistent
with long-run market stability.
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APPENDIX: EXPLANATION OF THE FOUR-WAY BREAKDOWN
OF EFFICIENCY LOSSES

Efficiency losses in any DA game can be decomposed into the following four
categories:

IM: wvalue of lost surplus of non-traded intra-marginal tokens (i.e., those that lie
to the left of the equilibrium quantity, ¢*) when the actual number of trades
g is less than ¢g* {or 0 otherwise).

EM: value of lost surplus due to trade of extra~-marginal tokens (i.e., those that lie
to the right of ¢* on the supply and demand curves) when the actual number
of trades ¢ is greater than ¢* (or 0 otherwise).

BS: wvalue of lost surplus due to trades of extra-marginal buyers’ tokens that dis-
placed potential trades of an equal number of buyers’ intra-marginal tokens.

8S:  value of lost surplus due to trades of extra-marginal seller’s tokens that dis-
placed potential trades of an equal number of sellers’ intra-marginal tokens.

In order to define these quantities, we first define IMB and IMS as the sum of
the values of 2ll intra-marginal tokens not traded by buyers and sellers, respectively,
during the per:od. Let EMB and EMS denote the sum of the values of all extra-
marginal tokens traded by buyers and sellers during the period. Then we have:

LOST SURPLUS = SURPLUS — PROFIT = IMB ~ EMB + EMS — IMS. (1)

Let NIMB and NIMS denote the number of intra-marginal tokens that failed
to be traded by buyers and sellers, respectively. Let NEMB and NEMS denote the
number of extra-marginal tokens traded for the two respective sides of the market.
Then we also have the identity -

g—¢ = NEMB — NIMB = NEMS - NIMS. (2)

Clearly when g = ¢, there are no net intra-marginal or extra-marginal trades,
so that EM = IM = 0. Then the total amount of lost surplus can then be
unambiguously divided into the two categories BS = IMB — EMB and §8 =
EMS — IMS. However if ¢ > ¢*, then we face the problem of how to allocate lost
surplus due to trades of extra-marginal tokens among the three categories EM, BS,
and S8, and if ¢ < ¢°, we face a similar problem of allocating lost surplus among
the categories IM, BS, and 8S. Define NBS, NSS, NEM and NIM as follows:

NEM = max(qg — ¢°,0),
NIM = max{g" ~ ¢,0),
NBS = min(NIMB, NEMB),
NSS = min(NIMS, NEMS). 3
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Then it is easy to see that the following identities hold:

NIMB = NIM + NBS,
NEMB = NEM + NBS,
NIMS = NIM + NSS,
NEMS = NEM + NSS. : (4)

Definition (3) provides an unambiguous way of decomposing the tota! number of
inefficient trades into the four categories BS, 88, EM, and IM. There is no unam-
biguous way of decomposing the value of lost surplus, however. For example, in
the DA game illustrated in Figure 1, buyer B2 traded two extra-marginal tokens,
and there are three intra-marginal tokens that B1 and B2 failed to trade, and one
intra-marginal token that 83 failed to trade. Thus, NEM==0, NIM=1, NBS=2, and
N850, which implies that EM=0 and S5=0. To compute the value of BS and
IM, we need to determine which of the three intra-marginal buyer’s tokens were
“bumnped.” We assume that any one of these tokens is equally likely to have been
bumped, and thus we value each “bumped” buyer’s token at IMB/3 and compute
BS as the value of B3's two extra-marginal tokens less 2/3IMS. IM is computed as
IMB/3 less the value of $3's untraded token. More generally EM, IM, BS, and SS
can be defined as follows:

EM = NEM (EMS - EMB),

IM = NIM (IMB - IMS),

BS = NBS (IMB ~ EMB),

85 = NS5 (EMS — IMS), (5)

where EMS = EMS/ max(NEMS, 1) is the average value of extra-marginal sellers’
tokens, and IMS, EMB, and IMB are defined similarly. Using identities (1) through
{4), it is easy to verify that the definitions of EM, IM, BS, and SS insure that they .
are always nonnegative and that the following identity holds:

LOST SURPLUS = EM +IM + BS -+ SS. (6)
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