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1 Introduction

In the age of digital technology, information is more easily accessible to the general public than ever
before. Given the wealth of information that is available to the average person, it is important that
people evaluate the quality of the information they receive and the source from which they receive
it. In an environment where information can simultaneously be shared and consumed, entities
participating in such an exchange may benefit from acting cooperatively with one another—that is,
outputting “good” information in order to incentivize others to reciprocate and also output “good”
information back to them.

However, cooperative or altruistic human behavior intuitively flies in the face of one of the primary
drivers of evolution: selfishness. Yet, cooperation in groups to complete large tasks or support
one another is often essential to the fitness of the constituent members of that group [1]. Key
to motivating cooperation in human communities is trust, the belief that one’s partners in an
endeavor will fulfill their part of the bargain. Consequently, individuals are more likely to exchange
information with each other if they trust one another to not take advantage of them or exploit
their vulnerabilities [2]. Key to trust is the track record of an individual’s decisions when faced
with the option to expend effort to support the group or selfishly refuse. An important question,
then, is what happens if the track record of an individual is not completely known or delayed? Can
trusting and cooperative communities still emerge?

To answer these questions, we use a game theoretic approach to model a system of agents engaging
in a cooperative endeavor with delayed information about the trustworthiness of the other members
of the group.

2 Model specifications

Agents are initialized on a Bernoulli random graph ∼ G(N, p) (e.g. Fig. 1), where N represents
the number of agents and p represents the probability of a tie being formed between two agents
(i.e. network density).

We assume that each of these agents are endowed with some kind of information and they want
to share this information with each of their neighbors. Agents have the choice to either send high
(H) quality information or low (L) quality information. In this framework, it is favorable to receive
high quality information, so those who send high quality information reliably are deemed more
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“trustworthy.” At each time step, agents simultaneously and privately choose to give either H or
L quality information to each of their neighbors. Choices are not revealed until ∆ rounds later.

Agent i’s trust of agent j is determined based on their history of past play. Agents will be more
trusting of others if those others frequently choose to give them H quality information. Trust is
defined to be the probability with which agent i believes that agent j will give him H quality
information in the current round; that is, trust is equal to the proportion of previous rounds played
(up until ∆ rounds ago) in which j gave i H quality information. Therefore, agent i’s trust, T, of
agent j at time t is given by:

Ti,j(t) =
H(t−∆)

H(t−∆) + L(t−∆)
(2.1)

where t is the round number, t−∆ is the round number counting the time delay (the agent’s most
recently revealed round), H : {t0, t1, ..., tn} → N is the function that returns the number of rounds
up to tk in which agent i received H quality information from agent j, and H : {t0, t1, ..., tn} → N
is a similar function which counts the number of Ls received by i from j.

Table 1: Payoff structure for agents

Alter
H L

Ego
H a, a d, b
L b, d c, c

The incentives for agents to choose which type of information to send is modeled using the payoff
structure detailed in Table 1. This payoff structure takes after the popular game the Stag Hunt,
which imposes the restriction a > b ≥ c > d on the individual payoffs. The Stag Hunt was
theoretically a good fit for our model because it captures the notions of social cooperation as well
as aspects of trust that causes agents to choose to engage in a riskier or more costly activity in
order to gain a higher reward.

Because of the time delay which prevents players from seeing the choices of their partners until ∆
rounds later, agents will make a choice to play H randomly according to the probability PH for the
first ∆ many rounds of the simulation. After the first ∆ rounds have passed, players will choose
to send H or L to all their partners by electing the higher of the expected values for each scenario
(as in equations 2.2 and 2.3), based on the summed expected payoffs of each interaction and the
proportional trustworthiness of a partner to play H.

Ei[H] =
∑

j∈N(i)

[Ti,j ∗ U(H,H) + (1− Ti,j) ∗ U(H,L)] (2.2)

Ei[L] =
∑

j∈N(i)

[Ti,j ∗ U(L,H) + (1− Ti,j) ∗ U(L,L)] (2.3)

where Ti,j is as defined in equation 2.1, U(x, y) is the utility function of the ego given the choice
he made, x, and the choice his alter made, y. For example, U(H,H) = 3.
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3 Results

A series of parameters were systematically altered in various simulation runs in order to evaluate
the variation in convergence behavior relative to these alterations. The parameters of interest are:

• N , the number of agents

• p, the network density

• ∆, the time delay

• a, b, c, d, the individual payoffs as shown in Table 1

• PH , the probability that an agent chooses H in the first ∆ rounds

Each simulation was run for a total of 25 rounds. All simulations were found to converge to an
equilibrium in which all agents were playing the same strategy (either all playing H or all playing L),
provided they were not isolated in the network. For every set of parameters tested, 500 repetitions
of each simulation with that particular parameter set was run.

In order to systematically test the effects of parameter changes on model convergence, a set of
default parameters were chosen to remain fixed while one of the variables was altered. The default
parameters were:

N = 25, p = 0.5, ∆ = 1, (a, b, c, d) = (3, 2, 2, 0), PH = 0.65

A network with example parameters N and p is represented in Figure 1.

Figure 1: A Bernoulli random graph generated with N=15 and p=0.25

For 5000 repetitions of simulations using the default parameters, the proportion of runs that ended
with an equilibrium of all players playing H equaled 0.20. Figure 2 shows the number of agents
who play the strategy H over time for 10 different simulation runs (of which 2 ended in the H
equilibrium and 8 ended in the L equilibrium, consistent with the results from the high volume
simulations with the same parameters). Varying the default parameters can drive the system from
a convergence to all playing L to all playing H. An example of this is illustrated in Figure 2, where
∆ is 4.
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Figure 2: Set of 10 simulations using the default parameter conditions

Figure 3: Set of 10 simulations using the default parameter conditions with ∆ = 4

The following tables detail the parameter sets used to run various simulations as well as the pro-
portion of simulations using those parameters which resulted in an equilibrium of H, represented
by the final column in each table titled “Runs w/ eq=H”. Key findings in these simulations include
a divergence of systems, ones that converge to networks of agents that all play H and networks of
agents that all play L. Several of the variables exhibit threshold dynamics, capable of pushing the
system from likely to end up all H to likely to end up all L. We chose default parameters near this
threshold to demonstrate how the manipulation of some of these parameters had non-linear effects
on the percentage of all H simulations.

First, consider Table 2, which examines the effects of varying the number of agents in the network.
This appears to have little to no impact on the proportion of runs that end with all H. There
is a small increase for an intermediate number of players, potentially due to the structure of such
networks that may allow for its quicker alignment and trust formation. Table 3 looks at the variation
of the probability of edge formation. This, again, affects network structure, increasing the density
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Table 2: Results for Simulations with Varied N

N p ∆ a, b, c, d PH Runs w/ eq=H

10 0.65 1 3,2,2,0 0.65 0.199

15 0.65 1 3,2,2,0 0.65 0.200

20 0.65 1 3,2,2,0 0.65 0.238

25 0.65 1 3,2,2,0 0.65 0.233

100 0.65 1 3,2,2,0 0.65 0.180

as p increases. This increase is not linear, rather its growth is greater in the middle of this scale
and slower near 0.25 and 1.

Table 3: Results for Simulations with Varied p

N p ∆ a, b, c, d PH Runs w/ eq=H

15 0.25 1 3,2,2,0 0.65 0.091

15 0.35 1 3,2,2,0 0.65 0.184

15 0.45 1 3,2,2,0 0.65 0.200

15 0.55 1 3,2,2,0 0.65 0.220

15 0.65 1 3,2,2,0 0.65 0.26

15 0.75 1 3,2,2,0 0.65 0.315

15 0.85 1 3,2,2,0 0.65 0.335

15 0.95 1 3,2,2,0 0.65 0.345

15 1 1 3,2,2,0 0.65 0.380

Table 4: Results for Simulations with Varied ∆

N p ∆ a, b, c, d PH Runs w/ eq=H

15 0.5 1 3,2,2,0 0.65 0.220

15 0.5 2 3,2,2,0 0.65 0.193

15 0.5 3 3,2,2,0 0.65 0.140

15 0.5 4 3,2,2,0 0.65 0.127

15 0.5 5 3,2,2,0 0.65 0.127

15 0.5 6 3,2,2,0 0.65 0.107

15 0.5 7 3,2,2,0 0.65 0.140

Table 4 looks at variations of time-delay delta. With an increase in delta, the number of runs
that go to H decrease but increase again at 7. This initial decrease is likely due to an increase
in noise during the first delta rounds of randomized assignments of L and H. As agents sum their
expectations, this may then lead them to a higher likelihood to conclude they must play L.

Table 5 shows the results for simulations with varying b and c, which we held as equal, the payoffs
associated with playing L. This trend was very clearly delineated: as b and c are increased the run
proportions of all H decrease, and the rate of this decrease increases until it approaches zero. This
can be qualitatively explained somewhat simply - as payoffs for playing L increase, the expected
value of playing L across all transactions also increases to the point where, at 2.5, it is very rare
that a run can find a trusting equilibrium where all players play H.
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Varying PH has equally clear consequences as shown in Table 6. PH is the probability that agents
will play H in each of their first delta time-steps, and since the process of establishing trust is very
dependent on these initial delta time-steps, the system will lock into L or H from there. Therefore,
it was expected that as we increased PH we saw a significant increase in the H proportion.

Table 5: Results for Simulations with Varied b, c (b = c)

N p ∆ a, b, c, d PH Runs w/ eq=H

15 0.5 1 3,1.5,1.5,0 0.65 0.816

15 0.5 1 3,1.6,1.6,0 0.65 0.793

15 0.5 1 3,1.65,1.65,0 0.65 0.718

15 0.5 1 3,1.7,1.7,0 0.65 0.656

15 0.5 1 3,1.75,1.75,0 0.65 0.622

15 0.5 1 3,1.8,1.8,0 0.65 0.456

15 0.5 1 3,2.2,2.2,0 0.65 0.0.12

15 0.5 1 3,2.5,2.5,0 0.65 0.0059

Table 6: Results for Simulations with Varied PH

N p ∆ a, b, c, d PH Runs w/ eq=H

15 0.5 1 3,2,2,0 0.55 0.055

15 0.5 1 3,2,2,0 0.6 0.158

15 0.5 1 3,2,2,0 0.7 0.368

15 0.5 1 3,2,2,0 0.75 0.518

15 0.5 1 3,2,2,0 0.8 0.683

15 0.5 1 3,2,2,0 0.85 0.855

15 0.5 1 3,2,2,0 0.9 0.955

15 0.5 1 3,2,2,0 0.95 1

4 Discussion

These results suggest a number of qualitative takeaways. However, we discuss these with caution
as the model and its results have limitations, chiefly that they depend on structural mathematical
assumptions. We assume the community is connected in a random graph network, though we
know that network structures in social communities are not random [3], which may affect trust
and cooperation. We assume a plausible payoff structure, but one which may not always represent
the way social interaction and exchange function. And finally, we assume perfect knowledge and
rational agent behavior, that all agents know about the delayed history of all other agents and that
they rationalize their subsequent actions by taking the higher of two expected value functions.

Despite these limitations, the model suggests promising results about how trust might be built
in social exchange. First, we have seen that trust, or the establishment of reputation, can lead
to cooperative environments, where all agents trust one another and act in good faith. Second,
cooperation emerges from self-centered behavior, so generosity or self-sacrifice is not necessary to
discourage agents from free-riding on one another. This is to be expected given that the agents
are payoff-maximizing and (H,H) and (L,L) are the pure Nash equilibria of the game. They may
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instead cooperate to the benefit of all. With the introduction of a relative point structure, where
agents compare their payoffs and compete with one another, we would likely see the environment
converge to all agents playing L.

Trust is instrumental to the future of the network community. In high trust scenarios, agents feel
safe playing H, while in low trust scenarios, agents will defensively also play L. What then affects
trust? In this model, trust is built on the history of what agents play. Since this is assigned
randomly for the first delta time-steps, the history of play, and thus the future too, may be path-
dependent and rely on how this randomization process works. Other variables and parameters
had significant effect on the number of runs that converged to all H, but PH , the probability that
players would choose H in each of the first delta time-steps is the most influential (see Tables 2-6).

Future work will include incorporating structured networks such as small world or scale-free net-
works to see how network position might affect the agent’s path to equilibrium. It has been
suggested that the presence of a single leader or a small influential group could affect the dynamics
of a group engaging in the formation of social contracts, as modeled by the Stag Hunt [4]. Some
have argued that influential actors in a network occupy positions called “structural holes” [5], posi-
tions which bridge between two groups of actors, while others have argued that leaders emerge from
central positions in the network [6]. Therefore, it may be interesting to consider various node-level
indices, like degree centrality and betweenness centrality, to see if there is any correlation between
such measures and the time in which they adopt the equilibrium strategy relative to their neighbors.

Another potential improvement that could be implemented to this model would be changing the
behavior of agents in the first ∆ many rounds before they are informed of their neighbors’ choices.
Since the preliminary results show that changing the probability with which agents play H during
these first rounds has significant effects on the likelihood of the system converging to H, altering
this mechanism may provide more insight as to how initial behavior affects later actions. In all,
the model and its results suggest further research into the mechanisms of establishing trust and its
importance on social exchange choices is needed to better understand their dynamics, incentives,
and patterns.

References

[1] E. Fehr and U. Fischbacher, “The nature of human altruism,” Nature, vol. 425, no. 6960, p. 785,
2003.

[2] J. K. Butler Jr, “Trust expectations, information sharing, climate of trust, and negotiation
effectiveness and efficiency,” Group & Organization Management, vol. 24, no. 2, pp. 217–238,
1999.

[3] M. O. Jackson, Social and economic networks. Princeton university press, 2010.

[4] B. Skyrms and R. Pemantle, “A dynamic model of social network formation,” in Adaptive
networks, pp. 231–251, Springer, 2009.

[5] R. S. Burt, “Structural holes and good ideas,” American journal of sociology, vol. 110, no. 2,
pp. 349–399, 2004.

[6] H. J. Leavitt, “Some effects of certain communication patterns on group performance.,” The
Journal of Abnormal and Social Psychology, vol. 46, no. 1, p. 38, 1951.

7


	Introduction
	Model specifications
	Results
	Discussion

